Background Asthma is a chronic inflammatory disease featured by inflammation and remodeling of airway. Adipose-derived mesenchymal stem cell (ADSCs)-derived exosomal miRNAs have been suggested as promising therapeutic manners for diseases. Methods ADSCs and airway smooth muscle cells (ASMCs) were isolated from SD rats. Flow cytometry was conducted to detect the surface biomarkers of isolated cells. Exosomes were extracted by sequentially centrifuge method and identified by Western blotting and nanoparticle tracking analysis (NTA). Uptake of exosomes by ASMCs was detected by confocal assay. ASMCs were treated with platelet-derived growth factor-BB (PDGF-BB) to mimic cell remodeling and inflammation. Cell counting 8 (CCK-8), Transwell, and flow cytometry were performed to determine the viability, migration, and apoptosis of ASMCs. Release of inflammatory factors was detected by enzyme-linked immunosorbent assay (ELISA). Levels of RNAs and proteins were measured by quantitative reverse transcription polymerase chain reaction (qRT-PCR) assay. Interaction between miR-301a-3p and signal transducer and activator of transcription 3 (STAT3) was determined by luciferase reporter gene assay. The effect of Exosomal miR-301a-3p was analyzed in ovalbumin (OVA)-induced asthma mouse model. Results ADSCs-derived exosomes could be effectively internalized by ASMCs. Exosomal miR-301a-3p notably suppressed the PDGF-BB-stimulated proliferation and migration of ASMCs, and enhanced apoptosis, as well as decreased the secretion of inflammatory factors. MiR-301a-3p directly targeted the 3ʹUTR region of STAT3. STAT3 overexpression reversed the suppressive effects of exosomal miR-301a-3p on ASMCs under PDGF-BB stimulation. The expression of miR-301a-3p and STAT3 was negative correlation in specimen from patients with asthma. Exosomal miR-301a-3p inhibited OVA-induced lung injury by targeting STAT3 in mice. Conclusion This study exposed that exosomal miR-301a-3p from ADSCs could effectively alleviate PDGF-BB-stimulated remodeling and inflammation of ASMCs via targeting STAT3, presented ADSCs-derived exosomal miR-301a-3p as a promising therapeutic approach for asthma.
The proportion of atypical pathogens in patient with AECOPD within mainland China is unknown. The objectives of this study were to determine the distribution of atypical pathogens among Chinese patients with AECOPD, to evaluate the clinical characteristics of different atypical pathogen infections, and to compare different detection methods for atypical pathogens. Patients and Methods: Specimens were collected from patients with AECOPD from March 2016 to November 2018 at eleven medical institutions in eight cities in China. Double serum, sputum, and urine samples were obtained from 145 patients. Serological and nucleic acid tests were used to assess for Mycoplasma pneumonia and Chlamydia pneumoniae; serological, urinary antigen, and nucleic acid tests were applied to detect Legionella pneumophila. The clinical characteristics of atypical pathogen-positive andnegative groups were also compared. Results: The overall positivity rate for Mycoplasma pneumoniae was 20.69% (30/145), with the highest rate being 20.00% (29/145) when determined by passive agglutination.The overall positive rates for Chlamydia pneumoniae and Legionella pneumophila were 29.66% (43/145) and 10.34% (15/145), respectively. The most common serotype of Legionella pneumophila was type 6. The maximum hospitalized body temperature, ratio of eosinophils, C-reactive protein (CRP) level, and procalcitonin (PCT) level of the Mycoplasma pneumoniae-positive group were significantly higher than those of the Mycoplasma pneumoniae-negative group. Patients in the Chlamydia pneumoniae-positive group smoked more, had higher proportions of comorbidities and frequent aggravations in the previous two years than those in the Chlamydia pneumoniae-negative group. Furthermore, the forced expiratory volume in one second to forced vital capacity (FEV 1 / FVC) ratio assessment of lung function was higher, and the concentration of arterial blood bicarbonate (HCO 3 − ) was lower in the Legionella pneumophila-positive group than in the Legionella pneumophila-negative group. Conclusion: Overall, atypical pathogens play an important role in AECOPD. Regarding the testing method, serological testing is a superior method to nucleic acid testing.
Background: Histone deacetylase (HDAC) families regulate a wide range of physical processes and development of several diseases, and the role of HDACs in asthma development and progression is worth further investigation. This study aimed to evaluate HDAC effects in a mouse model of asthma. Methods: HDAC8 selective inhibitor PCI-34051 was administered to a mouse model of ovalbumin (OVA)-sensitized and challenged asthma. Airway responsiveness, serum cytokines, histological changes of the airway, and expression levels of α-SMA, b-actin, VEGFR, VEGF, GAPDH, HDAC8, TGF-b3, CD 105, p-ERK 1/2, ERK 1/2, PI3K, p-AKT, AKT, and PDK1 were evaluated. The miR-381-3p level was also measured. Results: All classic histologic and cellular changes of asthma in inflammation and airway remodeling were altered by HDAC8 inhibitor PCI-34051 via regulating the miR-381-3p level and its downstream gene TGF-b3. Inhibition of TGF-b3 further reduced the activation of ERK, PI3K, AKT and PDK1. Conclusions: HDAC8 inhibitor PCI-34051 exhibits comprehensive control of asthmatic changes, including inflammation and airway remodeling, in a mouse model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.