Bacterial β-galactosidase is involved in lactose metabolism and acts as a prevalent reporter enzyme used in studying the activities of prokaryotic and eukaryotic promoters. Xanthomonas campestris pv. campestris (Xcc) is the pathogen of black rot disease in crucifers. β-Galactosidase activity can be detected in Xcc culture, which makes Escherichia coli LacZ unable to be used as a reporter enzyme in Xcc. To systemically understand the β-galactosidase in Xcc and construct a β-galactosidase -deficient strain for promoter activity analysis using LacZ as a reporter, we here analyzed the putative β-galactosidases in Xcc 8004. As glycosyl hydrolase (GH) family 2 (GH2) and 35 (GH35) family enzymes were reported to have beta-galactosidase activities, we studied all of them encoded by Xcc 8004. When expressed in E. coli, only two of the enzymes, XC1214 and XC2985, were found to have β-galactosidase activity. When deleted from the Xcc 8004 genome, only the XC1214 mutant had no β-galactosidase activity, and other GH2 and GH35 gene deletions resulted in no significant reduction in β-galactosidase activity. Therefore, XC1214 is the main β-galactosidase in Xcc 8004. Notably, we have constructed a β-galactosidase-free strain that can be employed in gene traps using LacZ as a reporter in Xcc. The results reported herein should facilitate the development of high-capacity screening assays that utilize the LacZ reporter system in Xcc.
Background Mesenchymal stem cell (MSC) therapy is an attractive treatment option for various cancers. Whether MSCs can be used to treat well-differentiated endometrial cancer (EC) remains unclear. The aim of this study is to explore the potential therapeutic effects of MSCs on EC and the underlying mechanisms. Methods The effects of adipose-derived MSCs (AD-MSCs), umbilical-cord-derived MSCs (UC-MSCs), and endometrium-derived MSCs (eMSCs) on the malignant behaviors of EC cells were explored via in vitro and in vivo experiments. Three EC models, including patient-derived EC organoid lines, EC cell lines, and EC xenograft model in female BALB/C nude mice, were used for this study. The effects of MSCs on EC cell proliferation, apoptosis, migration, and the growth of xenograft tumors were evaluated. The potential mechanisms by which eMSCs inhibit EC cell proliferation and stemness were explored by regulating DKK1 expression in eMSCs or Wnt signaling in EC cells. Results Our results showed that eMSCs had the highest inhibitory effect on EC cell viability, and EC xenograft tumor growth in mice compared to AD-MSCs and UC-MSCs. Conditioned medium (CM) obtained from eMSCs significantly suppressed the sphere-forming ability and stemness-related gene expression of EC cells. In comparison to AD-MSCs and UC-MSCs, eMSCs had the highest level of Dickkopf-related protein 1 (DKK1) secretion. Mechanistically, eMSCs inhibited Wnt/β-catenin signaling in EC cells via secretion of DKK1, and eMSCs suppressed EC cell viability and stemness through DKK1-Wnt/β-catenin signaling. Additionally, the combination of eMSCs and medroxyprogesterone acetate (MPA) significantly inhibited the viability of EC organoids and EC cells compared with eMSCs or MPA alone. Conclusions The eMSCs, but not AD-MSCs or UC-MSCs, could suppress the malignant behaviors of EC both in vivo and in vitro via inhibiting the Wnt/β-catenin signaling pathway by secreting DKK1. The combination of eMSCs and MPA effectively inhibited EC growth, indicating that eMSCs may potentially be a new therapeutic strategy for young EC patients desiring for fertility preservation.
Xanthomonas oryzae pv. oryzae (Xoo) is the causal agent of rice bacterial blight disease, which causes a reduction in rice production. The interaction between Xoo and rice is a model for the study of the gene-for-gene hypothesis, in which a resistance (R) gene encoding a product interacts with an effector molecule encoded by a corresponding bacterial avirulence (avr) gene. Rice XA21 functions as a plant innate immune receptor (R protein) and recognizes the avirulence protein (RaxX) of Xoo to induce the immune response and cope with pathogen attack. The sulphuration of RaxX by the tyrosine sulphotransferase RaxST is essential to its activity. The expression of raxST is regulated by the RaxH/RaxR and phoP/phoQ two-component systems. However, the regulation of raxX expression remains unclear. Here, we showed that a gene (raxM) encodes a small protein, which functions as a regulator of raxX expression. raxX and raxM are located upstream of raxST. Transcriptional analysis indicates that raxX and raxM are separately transcribed and the promoter of raxX is located at the raxM coding region. The RaxM protein regulates its own and raxX expression, and is required for the XA21-mediated immunity response. Therefore, we identified a regulator of raxX expression and of the Xoo-rice interaction. Our findings suggest that RaxX is not only regulated at the post-translational level, but also at the transcriptional level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.