As information and communication technology evolves and expands, business and markets are linked to form a complex international network, thus generating plenty of cross-border trading activities in the supply chain network. Through the observations from a typical cross-border supply chain network, this paper introduces the fuzzy reliability-oriented 2-hub center problem with cluster-based policy, which is a special case of the well-studied hub location problem (HLP). This problem differs from the classical HLP in the sense that (i) the hub-and-spoke (H&S) network is grouped into two clusters in advance based on their cross-border geographic features, and (ii) a fuzzy reliability optimization approach based on the possibility measure is developed. The proposed problem is first modeled through a mixed-integer nonlinear programming (MINLP) formulation that maximizes the reliability of the entire cross-border supply chain network. Then, some linearization techniques are implemented to derive a linear model, which can be efficiently solved by exact algorithms run by CPLEX for only small instances. To counteract the difficulty for solving the proposed problem in realistic-sized instances, a tabu search (TS) algorithm with two types of move operators (called “Swap I” and “Swap II”) is further developed. Finally, a series of numerical experiments based on the Turkish network and randomly generated large-scale datasets are set up to verify the applicability of the proposed model as well as the superiority of the TS algorithm compared to the CPLEX.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.