Background/Objective: Hematoma expansion (HE) predicts poor outcome and is an appealing treatment target in spontaneous intracerebral hemorrhage (ICH). Clinical evidence has shown an association of HE with peripheral white blood cells (WBC) count, but the individual contributions of leukocyte subtypes between literatures are described inconsistently. Our aim was to determine the relationship between admission absolute and differential leukocyte counts and HE by using different growth definitions.Methods: We analyzed spontaneous ICH patients who underwent baseline cranial computed tomography and blood sampling within 6 h of stroke onset in our institution between September 2013 and August 2018. Hematoma volume was calculated using a semiautomated 3-dimensional reconstruction algorithm. According to commonly used absolute or relative growth definitions (>6 mL, >12.5 mL, or >33%), we defined 5 types of HE. A propensity score-matching analysis was performed to evaluate the influence of complete blood count components on HE across the various growth definitions. The receiver operating characteristic analysis assessed the predictive ability of leukocyte counts for HE.Results: A total of 1,066 patients were included, of whom 11–21% met the 5 HE definitions. After propensity score-matching, except using the definition of >12.5 mL growth or its combination with >33% growth, both WBC and neutrophil count were independently associated with reduced risk of HE (odds ratio [OR] for 103 cells increase; OR, 0.86–0.99; all p < 0.05) after adjusting confounders in multivariate analyses. However, monocyte count was correlated with increased risk of HE under the usage of >12.5 mL expansion definition only (OR, 1.43; p = 0.024). There was no association between lymphocyte count and HE (all p > 0.05). Regardless of the growth definition, admission eosinophil count was directly associated with the risk of HE (OR, 6.92–31.60; all p < 0.05), and was the best predictive subtype with area under the curve 0.64, sensitivity 69.5%, and specificity 58.9% at the optimal cut-off value of 45 cells/μL.Conclusions: Growth definition affects the relationship of HE with leukocyte subtypes counting. Eosinophil count robustly predicts HE, and may be a surrogate when using an inflammatory marker to help select acute ICH patients with high expansion risk for hemostasis treatment in clinical trial and practice.
Background: Aneurysmal subarachnoid hemorrhage (SAH) is a devastating disease. Anterior communicating artery (ACoA) aneurysm is the most frequent location of intracranial aneurysms. The purpose of this study is to predict the clinical outcome at discharge after rupture of ACoA aneurysms using the random forest machine learning technique.Methods: A total of 607 patients with ruptured ACoA aneurysms were included in this study between December 2007 and January 2016. In addition to basic clinical variables, 12 aneurysm morphologic parameters were evaluated. A multivariate logistic regression analysis was performed to determine the independent predictors of poor outcome. Of the 607 patients, 485 patients were randomly selected for training and the remaining for internal testing. The random forest model was developed using the training data set. An additional 202 patients from February 2016 to December 2017 were collected for externally validating the model. The prediction performance of the random forest model was compared with two radiologists.Results: Patients' age (odds ratio [OR] = 1.04), ventilated breathing status (OR = 4.23), World Federation of Neurosurgical Societies (WFNS) grade (OR = 2.13), and Fisher grade (OR = 1.50) are significantly associated with poor outcome. None of the investigated morphological parameters of ACoA aneurysm is an independent predictor of poor outcome. The developed random forest model achieves sensitivities of 78.3% for internal test and 73.8% for external test. The areas under receiver operating characteristic (ROC) curve of the random forest model were 0.90 for the internal test and 0.84 for the external test. Both sensitivities and areas under ROC curves of our model are superior to those of two raters in both internal and external tests. Conclusions:The random forest model presents good performance in predicting the outcome after rupture of ACoA aneurysms, which may aid in clinical decision making.
BackgroundIntrahepatic cholangiocarcinoma (ICC) is a highly aggressive malignant tumor with a poor prognosis. This study aimed to establish a novel clinical-radiomics model for predicting the prognosis of ICC after radical hepatectomy.MethodsA clinical-radiomics model was established for 82 cases of ICC treated with radical hepatectomy in our hospital from May 2011 to December 2020. Radiomics features were extracted from venous-phase and arterial-phase images of computed tomography. Kaplan-Meier survival analysis was generated to compare overall survival (OS) between different groups. The independent factors were identified by univariate and multivariate Cox regression analyses. Nomogram performance was evaluated regarding discrimination, calibration, and clinical utility. C-index and area under the curve (AUC) were utilized to compare the predictive performance between the clinical-radiomics model and conventional staging systems.ResultsThe radiomics model included five features. The AUC of the radiomics model was 0.817 in the training cohort, and 0.684 in the validation cohort. The clinical-radiomics model included psoas muscle index, radiomics score, hepatolithiasis, carcinoembryonic antigen, and neutrophil/lymphocyte ratio. The reliable C-index of the model was 0.768, which was higher than that of other models. The AUC of the model for predicting OS at 1, and 3 years was 0.809 and 0.886, which was significantly higher than that of the American Joint Committee on Cancer 8th staging system (0.594 and 0.619), radiomics model (0.743 and 0.770), and tumor differentiation (0.645 and 0.628). After stratification according to the constructed model, the median OS was 59.8 months for low-risk ICC patients and 10.1 months for high-risk patients (p < 0.0001).ConclusionThe clinical-radiomics model integrating sarcopenia, clinical features, and radiomics score was accurate for prognostic prediction for mass-forming ICC patients. It provided an individualized prognostic evaluation in patients with mass-forming ICC and could helped surgeons with clinical decision-making.
Background Even though tofu is a traditional Chinese food loved by Asian people the wastewater generated during the production of tofu can pollute the environment, and the treatment of this generated wastewater can increase the operating cost of the plant. In this study, the production of nattokinase could be achieved by using the nitrogen source in tofu processing wastewater (TPW) instead of using the traditional nattokinase medium. This meets the need for the low-cost fermentation of nattokinase and at the same time addresses the environmental pollution concerns caused by the wastewater. Bacillus subtilis 13,932 is, a high yielding strain of nattokinase, which is stored in our laboratory. To increase the activity of nattokinase in the tofu process wastewater fermentation medium, the medium components and culture parameters were optimized. Nattokinase with high enzymatic activity was obtained in 7 L and 100 L bioreactors when TPW was used as the sole nitrogen source catalyzed by Bacillus subtilis. Such a result demonstrates that the production of nattokinase from TPW fermentation using B. subtilis can be implemented at an industrial level. Results The peptide component in TPW is a crucial factor in the production of nattokinase. Box–Behnken design (BBD) experiments were designed to optimize various critical components, i.e., Glucose, TPW, MgSO4·7H2O, CaCl2, in nattokinase fermentation media. A maximum nattokinase activity was recorded at 37 °C, pH 7.0, 70 mL liquid medium, and 200 rpm. The highest nattokinase activities obtained from 7 to 100 L bioreactors were 8628.35 ± 113.87 IU/mL and 10,661.97 ± 72.47 IU/mL, respectively. Conclusions By replacing the nitrogen source in the original medium with TPW, there was an increase in the enzyme activity by 19.25% after optimizing the medium and culture parameters. According to the scale-up experiment from conical flasks to 100 L bioreactors, there was an increase in the activity of nattokinase by 47.89%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.