Currently, the federated graph neural network (GNN) has attracted a lot of attention due to its wide applications in reality without violating the privacy regulations. Among all the privacy-preserving technologies, the differential privacy (DP) is the most promising one due to its effectiveness and light computational overhead. However, the DPbased federated GNN has not been well investigated, especially in the sub-graph-level setting, such as the scenario of recommendation system. The biggest challenge is how to guarantee the privacy and solve the non independent and identically distributed (non-IID) data in federated GNN simultaneously. In this paper, we propose DP-FedRec, a DP-based federated GNN to fill the gap. Private Set Intersection (PSI) is leveraged to extend the local graph for each client, and thus solve the non-IID problem. Most importantly, DP is applied not only on the weights but also on the edges of the intersection graph from PSI to fully protect the privacy of clients. The evaluation demonstrates DP-FedRec achieves better performance with the graph extension and DP only introduces little computations overhead.
Machine learning techniques have been widely applied in modern financial activities. Participants in the field are aware of the importance of data privacy. Vertical federated learning (VFL) was proposed as a solution to multi-party secure computation for machine learning to obtain the huge data required by the models as well as keep the privacy of the data holders. However, previous research majorly analyzed the algorithms under ideal conditions. Data imbalance in VFL is still an open problem. In this paper, we propose a privacy-preserving sampling strategy for imbalanced VFL based on federated graph embedding of the samples, without leaking any distribution information. The participants of the federation provide partial neighbor information for each sample during the intersection stage and the controversial negative sample will be filtered out. Experiments were conducted on commonly used financial datasets and one real-world dataset. Our proposed approach obtained the leading F1 score on all tested datasets on comparing with the baseline under sampling strategies for VFL.
CCS CONCEPTS• Security and privacy → Data anonymization and sanitization; • Computing methodologies → Machine learning; • Applied computing;
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.