The efficacy of NPWT in promoting wound healing has been largely accepted by clinicians, yet the number of high-level clinical studies demonstrating its effectiveness is small and much more can be learned about the mechanisms of action. In the future, hopefully we will have the data to assist clinicians in selecting optimal parameters for specific wounds including interface material, waveform of suction application, and the amount of suction to be applied. Further investigation into specific interface coatings and instillation therapy are also needed. We believe that advances in mechanobiology, the science of wound healing, the understanding of biofilms, and advances in cell therapy will lead to better care for our patients.
Keloids tend to occur on highly mobile sites with high tension. This study was designed to determine whether body surface areas exposed to large strain during normal activities correlate with areas that show high rates of keloid generation after wounding. Eight adult Japanese volunteers were enrolled to study the skin stretching/contraction rates of nine different body sites. Skin stretching/contraction was measured by marking eight points on each region and measuring the change in location of the marked points after typical movements. The distribution of 1,500 keloids on 483 Japanese patients was mapped. The parietal region and anterior lower leg were associated with the least stretching/contraction, while the suprapubic region had the highest stretching/contraction rate. With regard to keloid distribution, there were 733 on the anterior chest region (48.9%) and 403 on the scapular regions (26.9%). No keloids were reported on the scalp or anterior lower leg. Because these sites are rarely subjected to skin stretching/contraction, it appears that mechanical force is an important trigger that drives keloid generation even in patients who are genetically predisposed to keloids. Thus, mechanotransduction studies are useful for developing clinical approaches that reduce the skin tension around wounds or scars for the prevention and treatment of not only keloids but also hypertrophic scars.
The role of pathological angiogenesis on liver fibrogenesis is still unknown. Here, we developed fibrotic microniches (FμNs) that recapitulate the interaction of liver sinusoid endothelial cells (LSECs) and hepatic stellate cells (HSCs). We investigated how the mechanical properties of their substrates affect the formation of capillary-like structures and how they relate to the progression of angiogenesis during liver fibrosis. Differences in cell response in the FμNs were synonymous of the early and late stages of liver fibrosis. The stiffness of the early-stage FμNs was significantly elevated due to condensation of collagen fibrils induced by angiogenesis, and led to activation of HSCs by LSECs. We utilized these FμNs to understand the response to anti-angiogenic drugs, and it was evident that these drugs were effective only for early-stage liver fibrosis in vitro and in an in vivo mouse model of liver fibrosis. Late-stage liver fibrosis was not reversed following treatment with anti-angiogenic drugs but rather with inhibitors of collagen condensation. Our work reveals stage-specific angiogenesis-induced liver fibrogenesis via a previously unrevealed mechanotransduction mechanism which may offer precise intervention strategies targeting stage-specific disease progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.