Chemotaxis and autochemotaxis play an important role in many essential biological processes. We present a self-propelling artificial swimmer system that exhibits chemotaxis as well as negative autochemotaxis. Oil droplets in an aqueous surfactant solution are driven by interfacial Marangoni flows induced by micellar solubilization of the oil phase. We demonstrate that chemotaxis along micellar surfactant gradients can guide these swimmers through a microfluidic maze. Similarly, a depletion of empty micelles in the wake of a droplet swimmer causes negative autochemotaxis and thereby trail avoidance. We studied autochemotaxis quantitatively in a microfluidic device of bifurcating channels: Branch choices of consecutive swimmers are anticorrelated, an effect decaying over time due to trail dispersion. We modeled this process by a simple one-dimensional diffusion process and stochastic Langevin dynamics. Our results are consistent with a linear surfactant gradient force and diffusion constants appropriate for micellar diffusion and provide a measure of autochemotactic feedback strength vs. stochastic forces. This assay is readily adaptable for quantitative studies of both artificial and biological autochemotactic systems.artificial swimmers | chemotaxis | autochemotaxis | microfluidics L ocomotion of living bacteria or cells can be random or oriented. Oriented motion comprises the various "taxis" strategies by which bacteria or cells react to changes in their environment (1). Among these, chemotaxis is one of the best-studied examples (2, 3): Cells and microorganisms are able to sense certain chemicals (chemoattractants or chemorepellents) and move toward or away from them. This is an essential function in many biological processes, e.g., wound healing, fertilization, pathogenic species invading a host, or colonization dynamics (4, 5). When the chemoattractant or chemorepellent is produced by the microorganisms themselves, the system exhibits positive or negative autochemotaxis. Thus, chemotaxis provides a mechanism of interindividual communication. Modeling such communication strategies is key to understanding the collective behavior of microorganisms (6-8) as well as flocks of animals like fire ants (9, 10).To model the swimming motion of microorganisms, various self-propelling artificial swimmer systems have been developed based on different mechanisms. Generally, there are two classes of swimmers: systems driven by and aligning with external fields (11-14), including chemotactic gradients, and selfpropelled swimmers, which move autonomously in homogeneous environments (15-21). Many autonomous swimmers additionally react to external fields, e.g., phototactic gradients (22).Biological autochemotactic systems exhibit very complex behaviors (23,24), where physical effects are intermingling with effects from various bioprocesses such as cell migration, metabolism, and division. To untangle these effects, there have been some design proposals for artificial systems, such as in ref.25, and simulations on the dynamics o...
Methicillin-resistant Staphylococcus aureus (MRSA) has been one of the major nosocomial pathogens to cause frequent and serious infections that are associated with various biomedical surfaces. This study demonstrated that surface modified with host defense peptide-mimicking β-peptide polymer, has surprisingly high bactericidal activities against Escherichia coli ( E. coli) and MRSA. As surface-tethered β-peptide polymers cannot move freely to adopt the collaborative interactions with bacterial membrane and are too short to penetrate the cell envelop, we proposed a mode of action by diffusing away the cell membrane-stabilizing divalent ions, Ca and Mg. This hypothesis was supported by our study that Ca and Mg supplementation in the assay medium causes up to 80% loss of bacterial killing efficacy and that the addition of divalent ion chelating ethylenediaminetetraacetic acid into the above assay medium leads to significant recovery of the bacterial killing efficacy. In addition to its potent bacterial killing efficacy, the surface-tethered β-peptide polymer also demonstrated excellent biocompatibility by displaying no hemolysis and supporting mammalian cell adhesion and growth. In conclusion, this study demonstrated the potential of β-peptide polymer-modified surface in addressing nosocomial infections that are associated with various surfaces in biomedical applications.
Chemotaxis and auto-chemotaxis are key mechanisms in the dynamics of micro-organisms, e.g. in the acquisition of nutrients and in the communication between individuals, influencing the collective behaviour. However, chemical signalling and the natural environment of biological swimmers are generally complex, making them hard to access analytically. We present a well-controlled, tunable artificial model to study chemotaxis and autochemotaxis in complex geometries, using microfluidic assays of self-propelling oil droplets in an aqueous surfactant solution (Herminghaus et al 2014 Soft Matter 10 7008-22; Krüger et al 2016 Phys. Rev. Lett. 117). Droplets propel via interfacial Marangoni stresses powered by micellar solubilisation. Moreover, filled micelles act as a chemical repellent by diffusive phoretic gradient forces. We have studied these chemotactic effects in a series of microfluidic geometries, as published in Jin et al (2017 Proc. Natl Acad. Sci. 114 5089-94): first, droplets are guided along the shortest path through a maze by surfactant diffusing into the maze from the exit. Second, we let auto-chemotactic droplet swimmers pass through bifurcating microfluidic channels and record anticorrelations between the branch choices of consecutive droplets. We present an analytical Langevin model matching the experimental data. In a previously unpublished experiment, pillar arrays of variable sizes and shapes provide a convex wall interacting with the swimmer and, in the case of attachment, bending its trajectory and forcing it to revert to its own trail. We observe different behaviours based on the interplay of wall curvature and negative autochemotaxis, i.e. no attachment for highly curved interfaces, stable trapping at large pillars, and a narrow transition region where negative autochemotaxis makes the swimmers detach after a single orbit.
DNA and DNA superstructures were transcribed into pore-structure-tunable mesoporous silicas via the electrostatic interaction between the negatively charged phosphate groups of DNA backbones and the positively charged quaternary ammonium groups of a co-structure directing agent (CSDA).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.