Control and design optimization of hybrid electric powertrains is necessary to maximize the benefits of novel architectures. Previous studies have proposed multiple optimal and near-optimal control methods, approaches for design optimization, and ways to solve coupled design and control optimization problems for hybrid electric powertrains. This study presents control and design optimization of a novel hybrid electric powertrain architecture to evaluate its performance and potential using physics-based models for the electric machines, the battery and a near-optimal control, namely the equivalent consumption minimization strategy. Design optimization in this paper refers to optimizing the sizes of the powertrain components, i.e. electric machines, battery and final drive. The control and design optimization problem is formulated using nested approach with sequential quadratic programming as design optimization method. Metamodeling is applied to abstract the near-optimal powertrain control model to reduce the computational cost. Fuel economy, sizes of components, and consistency of city and highway fuel economy are reported to evaluate the performance of the powertrain designs. The results suggest an optimal powertrain design and control that grants good performance. The optimal design is shown to be robust and non-sensitive to slight component size changes when evaluated for the near-optimal control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.