Recently, the demand for data center computing has surged, increasing the total energy footprint of data centers worldwide. Data centers typically comprise three subsystems: IT equipment provides services to customers; power infrastructure supports the IT and cooling equipment; and the cooling infrastructure removes heat generated by these subsystems. This work presents a novel approach to model the energy flows in a data center and optimize its operation. Traditionally, supply-side constraints such as energy or cooling availability were treated independently from IT workload management. This work reduces electricity cost and environmental impact using a holistic approach that integrates renewable supply, dynamic pricing, and cooling supply including chiller and outside air cooling, with IT workload planning to improve the overall sustainability of data center operations. Specifically, we first predict renewable energy as well as IT demand. Then we use these predictions to generate an IT workload management plan that schedules IT workload and allocates IT resources within a data center according to time varying power supply and cooling efficiency. We have implemented and evaluated our approach using traces from real data centers and production systems. The results demonstrate that our approach can reduce both the recurring power costs and the use of non-renewable energy by as much as 60% compared to existing techniques, while still meeting the Service Level Agreements.
Demand response is a crucial aspect of the future smart grid. It has the potential to provide significant peak demand reduction and to ease the incorporation of renewable energy into the grid. Data centers' participation in demand response is becoming increasingly important given the high and increasing energy consumption and the flexibility in demand management in data centers compared to conventional industrial facilities. In this extended abstract we briefly describe recent work in [1] on two demand response schemes to reduce a data center's peak loads and energy expenditure: workload shifting and the use of local power generations. In [1], we conduct a detailed characterization study of coincident peak data over two decades from Fort Collins Utilities, Colorado and then develop two algorithms for data centers by combining workload scheduling and local power generation to avoid the coincident peak and reduce the energy expenditure. The first algorithm optimizes the expected cost and the second one provides a good worst-case guarantee for any coincident peak pattern. We evaluate these algorithms via numerical simulations based on real world traces from production systems. The results show that using workload shifting in combination with local generation can provide significant cost savings (up to 40% in the Fort Collins Utilities' case) compared to either alone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.