Summary
Path planning is a fundamental and critical task in many robotic applications. For energy‐constrained robot platforms, path planning solutions are desired with minimum time arrivals and minimal energy consumption. Uncertain environments, such as wind conditions, pose challenges to the design of effective minimum time‐energy path planning solutions. In this article, we develop a minimum time‐energy path planning solution in continuous state and control input spaces using integral reinforcement learning (IRL). To provide a baseline solution for the performance evaluation of the proposed solution, we first develop a theoretical analysis for the minimum time‐energy path planning problem in a known environment using the Pontryagin's minimum principle. We then provide an online adaptive solution in an unknown environment using IRL. This is done through transforming the minimum time‐energy problem to an approximate minimum time‐energy problem and then developing an IRL‐based optimal control strategy. Convergence of the IRL‐based optimal control strategy is proven. Simulation studies are developed to compare the theoretical analysis and the proposed IRL‐based algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.