CONSPECTUS:As a new class of photocatalysts, plasmonic noble metal nanoparticles with the unique ability to harvest solar energy across the entire visible spectrum and produce effective energy conversion have been explored as a promising pathway for the energy crisis. The resonant excitation of surface plasmon resonance allows the nanoparticles to collect the energy of photons to form a highly enhanced electromagnetic field, and the energy stored in the plasmonic field can induce hot carriers in the metal. The hot electron−hole pairs ultimately dissipate by coupling to phonon modes of the metal nanoparticles, resulting in a higher lattice temperature. The plasmonic electromagnetic field, hot electrons, and heat can catalyze chemical reactions of reactants near the surface of the plasmonic metal nanoparticles. This Account summarizes recent theoretical and experimental advances on the excitation mechanisms and energy transfer pathways in the plasmonic catalysis on molecules. Especially, current advances on plasmon-driven crystal growth and transformation of nanomaterials are introduced. The efficiency of the chemical reaction can be dramatically increased by the plasmonic electromagnetic field because of its higher density of photons. Similar to traditional photocatalysis, energy overlap between the plasmonic field and the HOMO− LUMO gap of the reactant is needed to realize resonant energy transfer. For hot-carrier-driven catalysis, hot electrons generated by plasmon decay can be transferred to the reactant through the indirect electron transfer or direct electron excitation process. For this mechanism, the energy of hot electrons needs to overlap with the unoccupied orbitals of the reactant, and the particular chemical channel can be selectively enhanced by controlling the energy distribution of hot electrons. In addition, the local thermal effect following plasmon decay offers an opportunity to facilitate chemical reactions at room temperature. Importantly, surface plasmons can not only catalyze chemical reactions of molecules but also induce crystal growth and transformation of nanomaterials. As a new development in plasmonic catalysis, plasmon-driven crystal transformation reveals a more powerful aspect of the catalysis effect, which opens the new field of plasmonic catalysis. We believe that this Account will promote clear understanding of plasmonic catalysis on both molecules and materials and contribute to the design of highly tunable catalytic systems to realize crystal transformations that are essential to achieve efficient solar-to-chemical energy conversion.
As one of the most important semiconductors, silicon has been used to fabricate electronic devices, waveguides, detectors, solar cells, etc. However, the indirect bandgap and low quantum efficiency (10−7) hinder the use of silicon for making good emitters. For integrated photonic circuits, silicon-based emitters with sizes in the range of 100−300 nm are highly desirable. Here, we show the use of the electric and magnetic resonances in silicon nanoparticles to enhance the quantum efficiency and demonstrate the white-light emission from silicon nanoparticles with feature sizes of ~200 nm. The magnetic and electric dipole resonances are employed to dramatically increase the relaxation time of hot carriers, while the magnetic and electric quadrupole resonances are utilized to reduce the radiative recombination lifetime of hot carriers. This strategy leads to an enhancement in the quantum efficiency of silicon nanoparticles by nearly five orders of magnitude as compared with bulk silicon, taking the three-photon-induced absorption into account.
The high spatial frequency periodic structures induced on metal surface by femtosecond laser pulses was investigated experimentally and numerically. It is suggested that the redistribution of the electric field on metal surface caused by the initially formed low spatial frequency periodic structures plays a crucial role in the creation of high spatial frequency periodic structures. The field intensity which is initially localized in the grooves becomes concentrated on the ridges in between the grooves when the depth of the grooves exceeds a critical value, leading to the ablation of the ridges in between the grooves and the formation of high spatial frequency periodic structures. The proposed formation process is supported by both the numerical simulations based on the finite-difference time-domain technique and the experimental results obtained on some metals such as stainless steel and nickel.
A task-specific ionic liquid strategy was proposed for designing oxygen vacancy-rich α-Fe2O3 nanocubes toward excellently electrocatalytic N2 fixation to NH3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.