An integrated pretreatment process based on hydrothermal pretreatment (HTP) followed by alkaline pretreatment has been applied to treat Eucalyptus. The chemical composition and structure changes of lignin during the pretreatment were comprehensively characterized. The surface morphology of the cell walls and lignin distribution of the pretreated Eucalyptus were detected by scanning electron and confocal Raman microscopies. It was found that the chemical bonds between lignin and hemicelluloses were cleaved during the pretreatment. The results also indicated that the contents of β-O-4′, β-β′, and β-5′ linkages were decreased with the increase of hydrothermal pretreatment temperature and the cleavage of β-O-4′ linkages in lignin was accompanied with repolymerization reactions. 31P NMR analysis showed that the content of aliphatic OH was reduced as the temperature increased and the total phenolic OH was elevated and then declined with the increase of temperature. Raman spectra analysis revealed that the dissolution rate of lignin in the secondary wall regions was faster than that in cell corner middle lamella regions during the pretreatment. These results will enhance the understanding of the cell wall deconstruction during the pretreatment and the mechanism of the integrated pretreatment process acting on Eucalyptus.
BackgroundThe biomass recalcitrance resulting from its chemical compositions and physical structures impedes the conversion of biomass into fermentable sugars. Pretreatment is a necessary procedure to increase the cellulase accessibility for bioconversion of lignocelluloses into bioethanol. Alternatively, ionic liquids, a series of promising solvents, provide unique opportunities for pretreating a wide range of lignocellulosic materials. In this study, a two-step treatment including ionic liquids pretreatment and successive alkali fractionations was performed on Eucalyptus to achieve a high enzymatic digestibility. The compositional and structural changes of Eucalyptus cell walls and their possible effect on saccharification ratio were comprehensively investigated.ResultsAfter the ionic liquids pretreatment, the cell walls became loose and even swelled, accompanying with the decrease of cellulose crystallinity. As compared to the simplex ionic liquids pretreatment, the integrated process resulted in the significant removal of hemicelluloses and lignin, enhancing the disruption of the cell walls and increasing the exposure of cellulose, which led to a higher conversion of cellulose to glucose. The glucose yield of Eucalyptus underwent the combination of [Bmim]OAc and alkali treatments reached the maximum (90.53 %), which was 6.6 times higher than that of the untreated Eucalyptus. The combination of chemical compositions and physical structure of Eucalyptus affected the efficiency of cellulose enzymatic hydrolysis. Especially, the changes of cellulose crystallinity played a major role in enhancing the enzymatic digestibility of Eucalyptus in this study.ConclusionsThe two-step treatment with ionic liquids pretreatment and successive alkali fractionation can be considered as a promising method to improve the conversion of cellulose to glucose. The detailed information obtained about chemical and anatomical changes was helpful to understand the underlying mechanism of the integrated treatment process acting on Eucalyptus for enhancing enzymatic digestibility.Electronic supplementary materialThe online version of this article (doi:10.1186/s13068-016-0578-y) contains supplementary material, which is available to authorized users.
An integrated process based on ionic liquids ([Bmim]Cl and [Bmim]OAc) pretreatment and successive alkali post-treatments (0.5, 2.0, and 4.0% NaOH at 90°C for 2h) was performed to isolate lignins from Eucalyptus. The structural features and spatial distribution of lignin in the Eucalyptus cell wall were investigated thoroughly. Results revealed that the ionic liquids pretreatment promoted the isolation of alkaline lignin from the pretreated samples without obvious structural changes. Additionally, the integrated process resulted in syringyl-rich lignin macromolecules with more β-O-4' linkages and less phenolic hydroxyl groups. Confocal Raman microscopy analysis showed that the dissolution behavior of lignin was varied in the morphologically distinct regions during the successive alkali treatments, and lignin dissolved was mainly stemmed from the secondary wall regions. These results provided some useful information for understanding the mechanisms of delignification during the integrated process and enhancing the potential utilizations of lignin in future biorefineries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.