Background: Ubiquitin-specific protease 7 (USP7) is a de-ubiquitin enzyme that plays an essential role in multiple cancers and becomes a target for treatment. However, the role of USP7 and its therapeutic value for HCC remains unclear. Methods: USP7 expression was examined in HCC tissues by western blot and immunohistochemistry. The correlation of USP7 and HCC prognosis was analyzed by Kaplan-Meier survival method. Mass spectrometry was determined and cell proliferation and tumorigenicity assays were conducted in vitro and in vivo treated by P22077 and sgRNA-USP7. Results: USP7 expression was significantly increased in HCC and associated with its progression. Interestingly, many HCC cells are sensitive to USP7 inhibition by using P22077. P22077 treatment not only induced cell death but also inhibited cell proliferation and migration in Huh7 and SK-Hep1 cells. In a xenograft model, P22077 efficiently inhibited tumor growth. In chemo-resistant HCC cells, P22077 decreased cell sensitivity to chemotherapy. In addition, mass spectrometry reveals 224 of significantly changed proteins upon P22077 treatment. Conclusions: We demonstrate a critical role of USP7 in HCC devolvement and chemoresistance. Disruption of USP7 function results in dis-regulated several key biological processes and subsequently activates BAX. USP7 might be a novel and drug-able target in HCC.
Background The role of methylcrotonoyl-CoA carboxylase 2 (MCCC2) in the development of tumors is well-established, and the involvement of leucine in the liver is well-known. However, the role of MCCC2 and the correlation between MCCC2 and leucine in the progression of hepatocellular carcinoma (HCC) have not yet been reported. Methods In this study, the Gepia database was used to evaluate the prognostic value of MCCC2 in HCC. The expression and localization of MCCC2 in HCC cells were determined by western blot and immunofluorescence assays. Flow cytometry and CCK-8 and transwell assays were carried out to explore the effect of MCCC2 on cell proliferation, migration, and invasion. In addition, mass spectrometry analysis was used to predict the potential cell function of MCCC2 in HCC. Results We found that the expression of MCCC2 increased in HCC tissues and that high expression of MCCC2 could predict poor outcomes in HCC patients. Knockdown expression of MCCC2 in HCC cells could reduce cell proliferation, migration, and invasion ability in vitro and could inhibit HCC cell proliferation in vivo. Interestingly, we found that HCC cells transfected with MCCC2-sgRNA failed to respond to leucine deprivation. Meanwhile, leucine deprivation inhibited cell proliferation, migration, and invasion in HCC cells where MCCC2 was present rather than in cells where MCCC2 was absent. In addition, knockdown of MCCC2 significantly reduced the glycolysis markers, glucose consumption, lactate secretion, and acetyl-CoA level, which is a product of leucine metabolism. Furthermore, we found that MCCC2 promotes the activation of ERK. Profiling the MCCC2 binding proteins revealed that MCCC2-associated proteins are enriched in biological processes, such as protein metabolism, energy pathway, and metabolism in HCC cells. Conclusions Our findings revealed that MCCC2 plays a critical role in the development of HCC, and the leucine metabolism pathway might be a novel target in HCC treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.