The pentatricopeptide repeat (PPR) protein family is a large family characterized by tandem arrays of a degenerate 35-amino-acid motif whose members function as important regulators of organelle gene expression at the post-transcriptional level. Despite the roles of PPRs in RNA editing in organelles, their editing activities and the underlying mechanism remain obscure. Here, we show that a novel DYW motif-containing PPR protein, PPS1, is associated with five conserved RNA-editing sites of nad3 located in close proximity to each other in mitochondria, all of which involve conversion from proline to leucine in rice. Both pps1 RNAi and heterozygous plants are characterized by delayed development and partial pollen sterility at vegetative stages and reproductive stage. RNA electrophoresis mobility shift assays (REMSAs) and reciprocal competition assays using different versions of nad3 probes confirm that PPS1 can bind to cis-elements near the five affected sites, which is distinct from the existing mode of PPR-RNA binding because of the continuity of the editing sites. Loss of editing at nad3 in pps1 reduces the activity of several complexes in the mitochondrial electron transport chain and affects mitochondrial morphology. Taken together, our results indicate that PPS1 is required for specific editing sites in nad3 in rice.
A dual-localized PPR protein, OsPGL1, is required for simultaneous RNA editing in mitochondria and chloroplasts. OsPGL1 binds to two distinct target transcripts directly and cooperates with OsMORFs.
SummaryCytoplasmic male sterility (CMS) and restoration of fertility (Rf) are widely distributed in plant species utilized by humans. RF5 and GRP162 are subunits of the restoration of fertility complex (RFC) in Hong-Lian rice. Despite the fact that the RFC is 400-500 kDa in size, the other proteins or factors in the complex still remain unknown. Here, we identified RFC subunit 3, which encodes a DUF1620-containing and WD40-like repeat protein (RFC3) that is present in all tissues but highly expressed in leaves.We established that RFC3 interacts with both RF5 and GRP162 in vitro and in vivo, and is transported into the mitochondria as a membrane protein. Furthermore, CMS RNA (atp6-orfH79) and CMS cytotoxic protein (ORFH79) accumulate when RFC3 is silenced in restorer lines.We presented the analysis with blue-native polyacrylamide gel electrophoresis, indicating that RFC is disrupted in the RNAi line. We concluded that RCF3 is indispensable as a scaffold protein for the assembly of the RFC complex.We unveil a new molecular player of the RFC in the Rf pathway in rice and propose the model of RFC based on these data.
14
Highlight 15We firstly characterized a dual-localized PPR protein which is required for RNA 16 editing in mitochondrion and chloroplast simultaneously. OsPGL1 binds to two 17 distinguish target transcripts directly and cooperated with MORFs. (which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.