This study investigated the accuracy of magnetic resonance angiography (MRA) and computed tomography angiography (CTA) in terms of reflecting the actual vascular length. Three-dimensional time of flight (3D TOF) MRA, 3D contrast-enhanced (CE) MRA, volume-rendering after CTA and maximum intensity projection were investigated using a flow model phantom with a diameter of 2.11 mm and area of 0.26 cm 2 . 1.5 and 3.0 Tesla devices were used for 3D TOF MRA and 3D CE MRA. CTA was investigated using 16 and 64 channel CT scanners, and the images were transmitted and reconstructed by volume-rendering and maximum intensity projection, followed by conduit length measurement as described above. The smallest 3D TOF MRA measure was 2.51 ± 0.12 mm with a flow velocity of 40 cm/s using the 3.0 Tesla apparatus, and 2.57 ± 0.07 mm with a velocity of 71.5 cm/s using the 1.5 Tesla apparatus; both images were magnified from the actual measurement of 2.11 mm. The measurement with the 16 channel CT scanner was smaller (3.83 ± 0.37 mm) than the reconstructed image on maximum intensity projection. The images from CTA from examination apparatus and reconstruction technique were all larger than the actual measurement.
The purpose of this study is to improve diagnostic efficiency of clinical study by setting up guidelines for more precise examination with a comparative analysis of signal intensity and image distortion depending on the location of X axial of object when performing magnetic resonance diffusion weighted imaging (MR DWI) examination. We arranged the self-produced phantom with a 45 mm of interval from the core of 44 regent bottles that have a 16 mm of external diameter and 55 mm of height, and were placed in 4 rows and 11 columns in an acrylic box. We also filled up water and margarine to portrait the fat. We used 3T Skyra and 18 Channel Body array coil. We also obtained the coronal image with the direction of RL (right to left) by using scan slice thinkness 3 mm, slice gap: 0mm, field of view (FOV): 450 × 450 mm , and obtained T2 fat saturation image. Then we did a comparative analysis on the differences between image distortion and signal intensity depending on the location of X axial based on isocenter of patient's table. We used "Image J" as a comparative analysis programme, and used SPSS v18.0 as a statistic programme. There was not much difference between image distortion and signal intensity on fat and water from T2 fat saturation image. But, the average value depends on the location of X axial was statistically significant (p < 0.05). From DWI image, when b-value was 0 and 400, there was no significant difference up to 2 nd columns right to left from the core of patient's table, however, there was a decline in signal intensity and image distortion from the 3 rd columns and they started to decrease rapidly at the 4 th columns. When b-value was 1,400, there was not much difference between the 1 st row right to left from the core of patient's table, however, image distortion started to appear from the 2 nd columns with no change in signal intensity, the signal was getting decreased from the 3 rd columns, and both signal intensity and image distortion started to get decreased rapidly. At this moment, the reagent bottles from outside out of 11 reagent bottles were not verified from the image, and only 9 reagent bottles were verified. However, it was not possible to verify anything from the 5 th columns. But, the average value depends on the location of X axial was statistically significant. On T2 FS image, there was a significant decline in image distortion and signal intensity over 180mm from the core of patient's table. On diffusion-weighted image, there was a significant decline in image distortion and signal intensity over 90 mm, and they became unverifiable over 180 mm. Therefore, we should make an image that has a diagnostic value from examinations that are hard to locate patient's position.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.