Up-regulation of OPN expression may play a role in tubulointerstitial injury associated with diabetic nephropathy, and blockade of the RAS by ramipril may confer renoprotection by decreasing OPN expression in non-insulin-dependent diabetic nephropathy.
Decreased AMPK-eNOS bioavailability mediates the development of diabetic peripheral neuropathy (DPN) through increased apoptosis and decreased autophagy activity in relation to oxidative stress. Schwann cells are responsible for maintaining structural and functional integrity of neurons and for repairing damaged nerves. We evaluated the neuro-protective effect of cinacalcet on DPN by activating the AMPK-eNOS pathway using db/db mice and human Schwann cells (HSCs). Sciatic nerve of db/db mice was characterized by disorganized myelin, axonal shrinkage, and degeneration that were accompanied by marked fibrosis, inflammation, and apoptosis. These phenotypical alterations were significantly improved by cinacalcet treatment along with improvement in sensorimotor functional parameters. Cinacalcet demonstrated favorable effects through increased expression and activation of calcium-sensing receptor (CaSR)-CaMKKβ and phosphorylation of AMPK-eNOS signaling in diabetic sciatic nerve. Cinacalcet decreased apoptosis and increased autophagy activity in relation to decreased oxidative stress in HSCs cultured in high-glucose medium as well. This was accompanied by increased expression of the CaSR, intracellular Ca++ ([Ca++]i) levels, and CaMKKβ-LKB1-AMPK signaling pathway, resulting in the net effect of increased eNOS phosphorylation, NOx concentration, Bcl-2/Bax ratio, beclin 1, and LC3-II/LC3-I ratio. These results demonstrated that cinacalcet treatment ameliorates inflammation, apoptosis, and autophagy through increased expression of the CaSR, [Ca++]i levels and subsequent activation of CaMKKβ-LKB-1-AMPK-eNOS pathway in the sciatic nerve and HSCs under diabetic condition. Therefore, cinacalcet may play an important role in the restoration and amelioration of DPN by ameliorating apoptosis and improving autophagy.
Studies investigating diabetic nephropathy (DN) have mostly focused on interpreting the pathologic molecular mechanisms of DN, which may provide valuable tools for early diagnosis and prevention of disease onset and progression. Currently, there are few therapeutic drugs for DN, which mainly consist of antihypertensive and antiproteinuric measures that arise from strict renin-angiotensin-aldosterone system inactivation. However, these traditional therapies are suboptimal and there is a clear, unmet need for treatments that offer effective schemes beyond glucose control. The complexity and heterogeneity of the DN entity, along with ambiguous renal endpoints that may deter accurate appraisal of new drug potency, contribute to a worsening of the situation. To address these issues, current research into original therapies to treat DN is focusing on the intrinsic renal pathways that intervene with intracellular signaling of anti-inflammatory, antifibrotic, and metabolic pathways. Mounting evidence in support of the favorable metabolic effects of these novel agents with respect to the renal aspects of DN supports the likelihood of systemic beneficial effects as well. Thus, when translated into clinical use, these novel agents would also address the comorbid factors associated with diabetes, such as obesity and risk of cardiovascular disease. This review will provide a discussion of the promising and effective therapeutic agents for the management of DN.
Reactive oxygen species and reactive nitrogen species are highly implicated in kidney injuries that include acute kidney injury, chronic kidney disease, hypertensive nephropathy, and diabetic nephropathy. Therefore, antioxidant agents are promising therapeutic strategies for kidney diseases. Catalytic antioxidants are defined as small molecular mimics of antioxidant enzymes, such as superoxide dismutase, catalase, and glutathione peroxidase, and some of them function as potent detoxifiers of lipid peroxides and peroxynitrite. Several catalytic antioxidants have been demonstrated to be effective in a variety of in vitro and in vivo disease models that are associated with oxidative stress, including kidney diseases. This review summarizes the evidence for the role of antioxidant enzymes in kidney diseases, the classifications of catalytic antioxidants, and their current applications to kidney diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.