We study the response of complex networks subject to attacks on vertices and edges. Several existing complex network models as well as real-world networks of scientific collaborations and Internet traffic are numerically investigated, and the network performance is quantitatively measured by the average inverse geodesic length and the size of the largest connected subgraph. For each case of attacks on vertices and edges, four different attacking strategies are used: removals by the descending order of the degree and the betweenness centrality, calculated for either the initial network or the current network during the removal procedure. It is found that the removals by the recalculated degrees and betweenness centralities are often more harmful than the attack strategies based on the initial network, suggesting that the network structure changes as important vertices or edges are removed. Furthermore, the correlation between the betweenness centrality and the degree in complex networks is studied.
Some of the parameters that are used in the computer program ECEPP (Empirical Conformational Energy Program for Peptides) to describe the geometry of amino acid residues and the potential energy of interactions have been updated. The changes are based on recently available experimental information. The most signifcant changes improve the geometry and the interactions of prolyl and hydroxyprolyl residues, on the basis of crystallographic structural data. The structure of the pyrrolidine ring has been revised to correspond to the experimentally determined extent of out-of-plane puckering of the five-membered ring. The geometry of the peptide group preceding a Pro residue has also been altered. The parameters for nonbonded interactions involving the C6 and H* atoms of Pro and Hyp have been modified. Use of the revised parameters provides improvements in the computed minimum-energy conformations of peptides containing the Pro-Pro and Ala-Pro sequences. In particular, it is demonstrated that an a-helix-like conformation of a residue preceding Pro is now only of moderately high energy, and thus it is an accessible state. This result corroborates the observed occurrence of Pro residues in kinked a-helices in globular proteins. The structure of the poly(G1y-PrePro) triple helix, a computational model for collagen structure, has been recomputed. The validity of previous computations for this model structure has been confirmed. The refinement of the computed interactions has provided a new general model structure to be used for future computations on collagen-like polypeptides.
The design of enzymes with new functions and properties has long been a goal in protein engineering. Here, we report a strategy to change the catalytic activity of an existing protein scaffold. This was achieved by simultaneous incorporation and adjustment of functional elements through insertion, deletion, and substitution of several active site loops, followed by point mutations to fine-tune the activity. Using this approach, we were able to introduce beta-lactamase activity into the alphabeta/betaalpha metallohydrolase scaffold of glyoxalase II. The resulting enzyme, evMBL8 (evolved metallo beta-lactamase 8), completely lost its original activity and, instead, catalyzed the hydrolysis of cefotaxime with a (kcat/Km)app of 1.8 x 10(2) (mole/liter)(-1) second(-1), thus increasing resistance to Escherichia coli growth on cefotaxime by a factor of about 100.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.