Anomaly detection is widely in demand in the field where automated detection of anomalous conditions in many observation tasks. While conventional data science approaches have shown interesting results, deep learning approaches to anomaly detection problems reveal new perspectives of possibilities especially where massive amount of data need to be handled. We develop anomaly detection applications on city train vibration data using deep learning approaches. We carried out preliminary research on anomaly detection in general and applied our real world data to existing solutions. In this paper, we provide a survey on anomaly detection and analyse our results of experiments using deep learning approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.