Raw vegetables irrigated with groundwater that may contain enteric viruses can be associated with foodborne viral disease outbreaks. In this study, we performed reverse transcription-PCR (RT-PCR) and cell culture-PCR to monitor the occurrence of enteric viruses in groundwater samples and in raw vegetables that were cultivated using that groundwater in South Korea. Samples were collected 10 times from three farms located in Gyeonggi Province, South Korea. RT-PCR and cell culture-PCR were performed to detect adenoviruses (AdVs), enteroviruses (EVs), noroviruses (NoVs), and rotaviruses, followed by sequence analyses of the detected strains. Of the 29 groundwater samples and the 30 vegetable samples, five (17%) and three (10%) were positive for enteric viruses, respectively. AdVs were the most frequently detected viruses in four groundwater and three vegetable samples. EVs and NoVs were detected in only one groundwater sample and one spinach sample, respectively. The occurrence of enteric viruses in groundwater and vegetable samples was not correlated with the water temperature and the levels of indicator bacteria, respectively. Phylogenetic analysis indicated that most of the detected AdVs were temporally distributed, irrespective of sample type. Our results indicate that raw vegetables may be contaminated with a broad range of enteric viruses, which may originate from virus-infected farmers and virus-contaminated irrigation water, and these vegetables may act as a potential vector of food-borne viral transmission.
The oral microbiota plays a critical role in both local and systemic inflammation. Metabolic syndrome (MetS) is characterized by low-grade inflammation, and many studies have been conducted on the gut microbiota from stool specimens. However, the etiological role of the oral microbiota in the development of MetS is unclear. In this study, we analyzed the oral and gut microbiome from 228 subgingival plaque and fecal samples from a Korean twin-family cohort with and without MetS. Significant differences in microbial diversity and composition were observed in both anatomical niches. However, a host genetic effect on the oral microbiota was not observed. A co-occurrence network analysis showed distinct microbiota clusters that were dependent on the MetS status. A comprehensive analysis of the oral microbiome identified Granulicatella and Neisseria as bacteria enriched in subjects with MetS and Peptococcus as bacteria abundant in healthy controls. Validation of the identified oral bacteria by quantitative PCR (qPCR) showed that healthy controls possessed significantly lower levels of G. adiacens (p = 0.023) and a higher ratio of Peptococcus to Granulicatella (p < 0.05) than MetS subjects. Our results support that local oral microbiota can be associated with systemic disorders. The microbial biomarkers identified in this study would aid in determination of which individuals develop chronic diseases from their MetS and contribute to strategic disease management.
The genus Arcobacter has been associated with human illness and fecal contamination by humans and animals. To better characterize the health risk posed by this emerging waterborne pathogen, we investigated the occurrence of Arcobacter spp. in Lake Erie beach waters. During the summer of 2010, water samples were collected 35 times from the Euclid, Villa Angela, and Headlands (East and West) beaches, located along Ohio's Lake Erie coast. After sample concentration, Arcobacter was quantified by realtime PCR targeting the Arcobacter 23S rRNA gene. Other fecal genetic markers (Bacteroides 16S rRNA gene [HuBac], Escherichia coli uidA gene, Enterococcus 23S rRNA gene, and tetracycline resistance genes) were also assessed. Arcobacter was detected frequently at all beaches, and both the occurrence and densities of Arcobacter spp. were higher at the Euclid and Villa Angela beaches (with higher levels of fecal contamination) than at the East and West Headlands beaches. The Arcobacter density in Lake Erie beach water was significantly correlated with the human-specific fecal marker HuBac according to Spearman's correlation analysis (r ؍ 0.592; P < 0.001). Phylogenetic analysis demonstrated that most of the identified Arcobacter sequences were closely related to Arcobacter cryaerophilus, which is known to cause gastrointestinal diseases in humans. Since human-pathogenic Arcobacter spp. are linked to human-associated fecal sources, it is important to identify and manage the human-associated contamination sources for the prevention of Arcobacter-associated public health risks at Lake Erie beaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.