In the present study, the pig CMP-N-acetylneuraminic acid hydroxylase gene (pcmah), a key enzyme for the synthesis of NeuGc (N-glycolylneuraminic acid), was cloned from pig small intestine and characterized. The ORF (open reading frame) of pcmah was 1734 bp, encoding 577 amino acids and consisting of 14 exons. Organ expression pattern analysis reveals that pcmah mRNA is mainly expressed in pig rectum, tongue, spleen and colon tissues, being the most highly expressed in small intestine. In the ectopic expression of pcmah, when pig kidney PK15 cells and human vascular endothelial ECV304 cells were transfected with the cloned pcmah, the NeuGc contents of these transfectants were greater in comparison with vector transfectants used as controls. In addition, in the functional analysis of NeuGc, HSMC (human-serum-mediated cytotoxicity) was elevated in the ectopic NeuGc-expressing pcmah-transfected cells compared with controls. Moreover, binding of human IgM to the pcmah-transfected cells was significantly increased, whereas binding of IgG was slightly increased, indicating that the human IgM type was a major anti-NeuGc antibody. Furthermore, pcmah silencing by shRNA (short hairpin RNA) resulted in a decrease in NeuGc content and xenoantigenicity in PK15. From the results, it was concluded that the pcmah gene was capable of synthesizing the NeuGc acting as a xenoantigen in humans, confirming the NeuGc-mediated rejection response in pig-human xenotransplantation.
Aerobic glycolysis is an emerging hallmark of many human cancers, as cancer cells are defined as a “metabolically abnormal system”. Carbohydrates are metabolically reprogrammed by its metabolizing and catabolizing enzymes in such abnormal cancer cells. Normal cells acquire their energy from oxidative phosphorylation, while cancer cells acquire their energy from oxidative glycolysis, known as the “Warburg effect”. Energy–metabolic differences are easily found in the growth, invasion, immune escape and anti-tumor drug resistance of cancer cells. The glycolysis pathway is carried out in multiple enzymatic steps and yields two pyruvate molecules from one glucose (Glc) molecule by orchestral reaction of enzymes. Uncontrolled glycolysis or abnormally activated glycolysis is easily observed in the metabolism of cancer cells with enhanced levels of glycolytic proteins and enzymatic activities. In the “Warburg effect”, tumor cells utilize energy supplied from lactic acid-based fermentative glycolysis operated by glycolysis-specific enzymes of hexokinase (HK), keto-HK-A, Glc-6-phosphate isomerase, 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase, phosphofructokinase (PFK), phosphor-Glc isomerase (PGI), fructose-bisphosphate aldolase, phosphoglycerate (PG) kinase (PGK)1, triose phosphate isomerase, PG mutase (PGAM), glyceraldehyde-3-phosphate dehydrogenase, enolase, pyruvate kinase isozyme type M2 (PKM2), pyruvate dehydrogenase (PDH), PDH kinase and lactate dehydrogenase. They are related to glycolytic flux. The key enzymes involved in glycolysis are directly linked to oncogenesis and drug resistance. Among the metabolic enzymes, PKM2, PGK1, HK, keto-HK-A and nucleoside diphosphate kinase also have protein kinase activities. Because glycolysis-generated energy is not enough, the cancer cell-favored glycolysis to produce low ATP level seems to be non-efficient for cancer growth and self-protection. Thus, the Warburg effect is still an attractive phenomenon to understand the metabolic glycolysis favored in cancer. If the basic properties of the Warburg effect, including genetic mutations and signaling shifts are considered, anti-cancer therapeutic targets can be raised. Specific therapeutics targeting metabolic enzymes in aerobic glycolysis and hypoxic microenvironments have been developed to kill tumor cells. The present review deals with the tumor-specific Warburg effect with the revisited viewpoint of recent progress.
Key wordsvalproic acid; human GM3 synthase; human n e u r o b l a s t o m a ; C R E B ; t r a n s c r i p t i o n a l regulation 1 This work was supported by a grant (M1061 9010001-08N1901-00110) from the Korea Science and Engineering Foundation (KOSEF). 6 Correspondence to Prof Young-choon LEE. AbstractAim: To investigate whether valproic acid (VPA) modulates human GM3 synthase (hST3Gal V) mRNA expression, as a part of ganglioside GM3 biosynthesis, in human neuroblastoma cells. Methods: Using RT-PCR and immunofluorescent confocal microscopy, we examined hST3Gal V mRNA and GM3 levels during VPA-induced differentiation of human neuroblastoma SK-N-BE(2)-C cells. We characterized the VPA-inducible promoter region within the hST3-Gal V gene using luciferase constructs carrying 5'-deletions of the hST3Gal V promoter. Results: RT-PCR indicated that VPA-mediated hST3Gal V induction is transcriptionally regulated. Functional analysis of the 5'-flanking region of the hST3Gal V gene demonstrated that the -177 to -83 region, which contains a cAMP-responsive element (CRE) at -143, functions as the VPA-inducible promoter by actively binding CRE binding protein (CREB). In addition, sitedirected mutagenesis and electrophoretic mobility shift assay indicated that the CRE at -143 is crucial for the VPA-induced expression of hST3Gal V in SK-N-BE(2)-C cells. Conclusion: Our results isolated the core promoter region in the hST3Gal V promoter, a CRE at -143, and demonstrated that it is essential for transcriptional activation of hST3Gal V in VPA-induced SK-N-BE(2)-C cells. Subsequent CREB binding to this CRE mediates VPA-dependent upregulation of hST3Gal V gene expression.
Endometriosis is a disease characterized by implants of endometrial tissue outside the uterine cavity and is strongly associated with infertility. Focal adhesion of endometrial tissue to the peritoneum is an indication of incipient endometriosis. In this study, we examined the effect of various cytokines that are known to be involved in the pathology of endometriosis on endometrial cell adhesion. Among the investigated cytokines, transforming growth factor-β1 (TGF-β1) increased adhesion of endometrial cells to the mesothelium through induction of α2-6 sialylation. The expression levels of β-galactoside α2-6 sialyltransferase (ST6Gal) 1 and ST6Gal2 were increased through activation of TGF-βRI/SMAD2/3 signaling in endometrial cells. In addition, we discovered that terminal sialic acid glycan epitopes of endometrial cells engage with sialic acid-binding immunoglobulin-like lectin-9 expressed on mesothelial cell surfaces. Interestingly, in an in vivo mouse endometriosis model, inhibition of endogenous sialic acid binding by a NeuAcα2-6Galβ1-4GlcNAc injection diminished TGF-β1-induced formation of endometriosis lesions. Based on these results, we suggest that increased sialylation of endometrial cells by TGF-β1 promotes the attachment of endometrium to the peritoneum, encouraging endometriosis outbreaks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.