The Warburg effect describes a pro-oncogenic metabolism switch such that cancer cells take up more glucose than normal tissue and favor incomplete oxidation of glucose even in the presence of oxygen. To better understand how tyrosine kinase signaling, which is commonly increased in tumors, regulates the Warburg effect, we performed phosphoproteomic studies. We found that oncogenic forms of fibroblast growth factor receptor type 1 inhibit the pyruvate kinase M2 (PKM2) isoform by direct phosphorylation of PKM2 tyrosine residue 105 (Y 105 ). This inhibits the formation of active, tetrameric PKM2 by disrupting binding of the PKM2 cofactor fructose-1,6-bisphosphate. Furthermore, we found that phosphorylation of PKM2 Y 105 is common in human cancers. The presence of a PKM2 mutant in which phenylalanine is substituted for Y 105 (Y105F) in cancer cells leads to decreased cell proliferation under hypoxic conditions, increased oxidative phosphorylation with reduced lactate production, and reduced tumor growth in xenografts in nude mice. Our findings suggest that tyrosine phosphorylation regulates PKM2 to provide a metabolic advantage to tumor cells, thereby promoting tumor growth.
SUMMARY Many tumor cells rely on aerobic glycolysis instead of oxidative phosphorylation for their continued proliferation and survival. Myc and HIF-1 are believed to promote such a metabolic switch by, in part, upregulating gene expression of pyruvate dehydrogenase (PDH) kinase 1 (PDHK1), which phosphorylates and inactivates mitochondrial PDH and consequently pyruvate dehydrogenase complex (PDC). Here we report that tyrosine phosphorylation enhances PDHK1 kinase activity by promoting ATP and PDC binding. Functional PDC can form in mitochondria outside of matrix in some cancer cells and PDHK1 is commonly tyrosine phosphorylated in human cancers by diverse oncogenic tyrosine kinases localized to different mitochondrial compartments. Expression of phosphorylation-deficient, catalytic hypomorph PDHK1 mutants in cancer cells leads to decreased cell proliferation under hypoxia and increased oxidative phosphorylation with enhanced mitochondrial utilization of pyruvate, and reduced tumor growth in xenograft nude mice. Together, tyrosine phosphorylation activates PDHK1 to promote the Warburg effect and tumor growth.
Our previous studies have clearly shown that the angiogenic enzymes, matrix metalloproteinase (MMP) -2/9, are directly involved in human hepatic tumorigenesis and metastasis and suggest that the MMP-2/9 inhibitors, which have dual inhibitory activities on enzyme activity and transcription, represent the best candidates for achieving tumor regression. Many anti-cancer drugs have strong cellular cytotoxicity and side effects, indicating that strong anti-cancer drugs that have no or minimal cytotoxicity and side effects need to be developed. The specific aim of the present study was to develop powerful anti-cancer drugs with specific tumor regression and anti-metastatic potential having the dual inhibitory activities of specific MMP-2 and -9 enzyme activities and gene transcription at the molecular level. Caffeic acid (CA), a strong and selective MMP-9 activity and transcription inhibitor, was isolated from the plant Euonymus alatus and its derivative, caffeic acid phenethyl ester (CAPE), was synthesized. CA and CAPE selectively inhibited MMP-2 and -9 but not -1, -3, -7, or cathepsin K. Treatment of HepG2 cells with CA (100 microg/mL) and CAPE (5 microg/mL) suppressed phorbol 12-myristate 13-acetate (PMA) -induced MMP-9 expression by inhibiting the function of NF-kappaB, but not AP-1. We confirmed that CA and CAPE suppressed the growth of HepG2 tumor xenografts in nude mice in vivo. The subcutaneous and oral administrations of CA and CAPE significantly reduced the liver metastasis. These results confirm the therapeutic potential of the compounds and suggest that the anti-metastatic and anti-tumor effects of CA and CAPE are mediated through the selective suppression of MMP-9 enzyme activity and transcriptional down-regulation by the dual inhibition of NF-kappaB as well as MMP-9 catalytic activity.
Hepatitis B virus (HBV) X protein (HBx) has been shown to be essential for the development of hepatocellular carcinoma (HCC). Recently, we have found that HBx causes the progression of liver cancer through down-expression of PTEN, known as a tumor suppressor gene (1). The prognosis for HCC depends mainly on the clinicopathological characteristic regarding invasion and metastasis. The expression of matrix metalloproteinase (MMP)-9 has been implicated as playing an important role in HCC invasion and metastasis. We previously reported that HBV infection increased the invasiveness of hepatocytes and HCC cells through the transcriptional activation of MMP-9 (2). The HBx was shown to activate the mitogen-activated protein (MAP) kinase and phosphatidylinositol 3-kinase (PI-3K) signal cascade, which is essential for activation of transcription factors such as activating protein (AP)-1 and nuclear factor (NF)-kappaB. In this study, we show that the HBx protein stimulates the activities of the PI-3K-Akt/ protein kinase B (PKB) as well as extracellular signal-regulated kinase 1/2 (ERK 1/2) in HBx-transfected cells. Furthermore, we have shown that enhanced expression of MMP-9 in HBx-transfected cells mediated by not only activation of AP-1 transcriptional activity through ERKs pathway but also activation of NF-kappaB transcriptional activity through PI-3K-AKT/PKB pathway, and was associated with the invasive potential. However, treatment with U0126 (known as the ERKs inhibitor) or wortmannin (known as the PI-3K inhibitor), but not SB203580 (known as the p38 MAPK inhibitor), markedly inhibited the expression of MMP-9 induced by HBx in HBx-transfected cells. Seemingly, the invasiveness of HBx-transfected cells was decreased by treating with U0126 or wortmannin, but not SB203580. These results clearly suggest that the HBx contributed to the transcriptional regulation of MMP-9 through the ERKs and PI-3K-AKT/PKB pathway, and increased an invasive potential of cells.
The Warburg effect describes an increase in aerobic glycolysis and enhanced lactate production in cancer cells. Lactate dehydrogenase A (LDH-A) regulates the last step of glycolysis that generates lactate and permits the regeneration of NAD ؉ . LDH-A gene expression is believed to be upregulated by both HIF and Myc in cancer cells to achieve increased lactate production. However, how oncogenic signals activate LDH-A to regulate cancer cell metabolism remains unclear. We found that the oncogenic receptor tyrosine kinase FGFR1 directly phosphorylates LDH-A. Phosphorylation at Y10 and Y83 enhances LDH-A activity by enhancing the formation of active, tetrameric LDH-A and the binding of LDH-A substrate NADH, respectively. Moreover, Y10 phosphorylation of LDH-A is common in diverse human cancer cells, which correlates with activation of multiple oncogenic tyrosine kinases. Interestingly, cancer cells with stable knockdown of endogenous LDH-A and rescue expression of a catalytic hypomorph LDH-A mutant, Y10F, demonstrate increased respiration through mitochondrial complex I to sustain glycolysis by providing NAD ؉ . However, such a compensatory increase in mitochondrial respiration in Y10F cells is insufficient to fully sustain glycolysis. Y10 rescue cells show decreased cell proliferation and ATP levels under hypoxia and reduced tumor growth in xenograft nude mice. Our findings suggest that tyrosine phosphorylation enhances LDH-A enzyme activity to promote the Warburg effect and tumor growth by regulating the NADH/NAD؉ redox homeostasis, representing an acute molecular mechanism underlying the enhanced lactate production in cancer cells.Cancer cells take up more glucose than normal tissue and favor aerobic glycolysis, generating lactate through a NADHdependent enzyme, lactate dehydrogenase A (LDH-A), which catalyzes the conversion of pyruvate to lactate during glycolysis. This is the last step of glycolysis that permits the regeneration of NAD ϩ , which is needed as an electron acceptor to maintain cytosolic glucose catabolism (2). Therefore, most tumor cells are reliant on lactate production for their survival.LDH-A gene expression is believed to be upregulated by both HIF and Myc in cancer cells to achieve increased lactate production (1,7,16,(25)(26)(27). In addition, expression of LDH-A was previously implicated to be involved in tumor initiation and growth. Targeting LDH-A by short hairpin RNA (shRNA) in several tumor cell lines is sufficient to stimulate oxidative phosphorylation in these cells, which is accompanied by an increase in the rate of oxygen consumption and a decrease in mitochondrial membrane potential (5). This provides evidence of the direct link between glycolysis and oxidative phosphorylation that involves LDH-A. Moreover, RNA interference (RNAi)-mediated reduction of LDH-A expression compromises the ability of tumor cells to proliferate under hypoxia and induce tumorigenesis (5). Recently, it was reported that targeting LDH-A by a small-molecule inhibitor, FX11, induced significant oxidative stre...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.