DISCLAIMER This paper was submitted to the Bulletin of the World Health Organization and was posted to the COVID-19 open site, according to the protocol for public health emergencies for international concern as described in Vasee Moorthy et al.
Abstract. This paper presents an experimental study that examines the performance of various combination techniques for content-based image retrieval using a fusion of visual and textual search results. The evaluation is comprehensively benchmarked using more than 160,000 samples from INEX-MM2006 images dataset and the corresponding XML documents. For visual search, we have successfully combined Hough transform, Object's color histogram, and Texture (H.O.T). For comparison purposes, we used the provided UvA features. Based on the evaluation, our submissions show that Uva+Text combination performs most effectively, but it is closely followed by our H.O.T-(visual only) feature. Moreover, H.O.T+Text performance is still better than UvA (visual) only. These findings show that the combination of effective text and visual search results can improve the overall performance of CBIR in Wikipedia collections which contain a heterogeneous (i.e. wide) range of genres and topics.
With the explosive growth of resources available through the Internet, information mismatching and overload have become a severe concern to users. Web users are commonly overwhelmed by huge volume of information and are faced with the challenge of finding the most relevant and reliable information in a timely manner. Personalised information gathering and recommender systems represent state-of-the-art tools for efficient selection of the most relevant and reliable information resources, and the interest in such systems has increased dramatically over the last few years. However, web personalization has not yet been well-exploited; difficulties arise while selecting resources through recommender systems from a technological and social perspective. Aiming to promote high quality research in order to overcome these challenges, this paper provides a comprehensive survey on the recent work and achievements in the areas of personalised web information gathering and recommender systems. The report covers concept-based techniques exploited in personalised information gathering and recommender systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.