Background: Viral RNA polymerase nucleotide incorporation fidelity contributes to pathogenesis. Results: A poliovirus mutator strain and its polymerase have been characterized. Conclusion: Pathogenesis requires optimal polymerase fidelity; not all mutations in a viral genome are linked to polymerase fidelity. Significance: Mutator and antimutator phenotypes can be harnessed for the development of viral prophylaxis and antiviral therapies.
Background:The motif D loop in poliovirus RNA-dependent RNA polymerase is important for catalysis and fidelity.
Background: Few approaches exist to rationally engineer live, attenuated virus vaccines. Results: Converting the conserved catalytic regulator lysine of the viral polymerase to arginine produces a slow, attenuated virus that elicits a protective immune response. Conclusion:We have developed a polymerase mechanism-based strategy for viral attenuation and vaccine development. Significance: This strategy may be used to create live, attenuated vaccines for other viruses.
The Sabin I poliovirus live, attenuated vaccine strain encodes for four amino acid changes (i.e., D53N, Y73H, K250E, and T362I) in the RNA-dependent RNA polymerase (RdRp). We have previously shown that the T362I substitution leads to a lower fidelity RdRp, and viruses encoding this variant are attenuated in a mouse model of poliovirus. Given these results, it was surprising that the nucleotide incorporation rate and nucleobase fidelity of the Sabin I RdRp is similar to that of wild-type enzyme, although the Sabin I RdRp is less selective against nucleotides with modified sugar groups. We suggest that the other Sabin amino acid changes (i.e., D53N, Y73H, K250E) help to re-establish nucleotide incorporation rates and nucleotide discrimination near wild-type levels, which may be a requirement for the propagation of the virus and its efficacy as a vaccine strain. These results also suggest that the nucleobase fidelity of the Sabin I RdRp likely does not contribute to viral attenuation.
Vaccines remain the most effective way of preventing infection and spread of infectious diseases. These prophylactics have been used for centuries but still to this day only three main design strategies exist: (1) live attenuated virus (LAV) vaccines, (2) killed or inactivated virus vaccines, (3) and subunit vaccines of the three, the most efficacious vaccines remain LAVs. LAVs replicate in relevant tissues, elicit strong cellular and humoral responses, and often confer lifelong immunity. While this vaccine strategy has produced the majority of successful vaccines in use today, there are also important safety concerns to consider with this approach. In the past, the development of LAVs has been empirical. Blind passage of viruses in various cell types results in the accumulation of multiple attenuating mutations leaving the molecular mechanisms of attenuation unknown. Also, due to the high error rate of RNA viruses and selective pressures of the host environment, these LAVs, derived from such viruses, can potentially revert back to wild-type virulence. This not only puts the vaccinee at risk, but if shed can put those that are unvaccinated at risk as well. While these vaccines have been successful there still remains a need for a rational design strategy by which to create additional LAVs. One approach for rational vaccine design involves increasing the fidelity of the viral RdRp. Increased fidelity decreases the viral mutational frequency thereby reducing the genetic variation the virus needs in order to evade the host imposed bottlenecks to infection. While polymerase mutants exist which decrease viral mutation frequency the mutations are not in conserved regions of the polymerase, which doesn’t lend itself toward using a common mutant approach toward developing a universal vaccine strategy for all RNA viruses. We have identified a conserved lysine residue in the active site of the PV RdRp that acts as a general acid during nucleotide incorporation. Mutation from a lysine to an arginine results in a high fidelity polymerase that replicates slowly thus creating an attenuated virus that is genetically stable and less likely to revert to a wild-type phenotype. This chapter provides detailed methods in which to identify the conserved lysine residue and evaluating fidelity and attenuation in cell culture (in vitro) and in the PV transgenic murine model (in vivo).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.