Pharmacological and biochemical approaches were used to elucidate the involvement of growth factor signaling pathways mediating estrogen neuroprotection in primary cortical neurons after glutamate excitotoxicity. We addressed the activation of mitogen-activated protein kinase (MAPK) signaling pathways, which are activated by growth factors such as nerve growth factor (NGF). Inhibition of MAPK signaling with the MAPK kinase inhibitor PD98059 blocks both NGF and estrogen neuroprotection in these neurons. These results correlate with a rapid and sustained increase in MAPK activity within 30 min of estrogen exposure. The involvement of signaling molecules upstream from MAPK was also examined to determine whether activation of MAPK by estrogen is mediated by tyrosine kinase activity. Estrogen produces a rapid, transient activation of src-family tyrosine kinases and tyrosine phosphorylation of p21(ras)-guanine nucleotide activating protein. Effects of estrogen on neuroprotection, as well as rapid activation of tyrosine kinase and MAPK activity, are blocked by the anti-estrogen ICI 182,780. This provides evidence that activation of the MAPK pathway by estrogen participates in mediating neuroprotection via an estrogen receptor. These results describe a novel mechanism by which cytoplasmic actions of the estrogen receptor may activate the MAPK pathway, thus broadening the understanding of effects of estrogen in neurons.
Recently, overexpression of the genes TMEM16A and TMEM16B has been shown to produce currents qualitatively similar to native Ca(2+)-activated Cl(-) currents (I(ClCa)) in vascular smooth muscle. However, there is no information about this new gene family in vascular smooth muscle, where Cl(-) channels are a major depolarizing mechanism. Qualitatively similar Cl(-) currents were evoked by a pipette solution containing 500 nM Ca(2+) in smooth muscle cells isolated from BALB/c mouse portal vein, thoracic aorta, and carotid artery. Quantitative PCR using SYBR Green chemistry and primers specific for transmembrane protein (TMEM) 16A or the closely related TMEM16B showed TMEM16A expression as follows: portal vein > thoracic aorta > carotid artery > brain. In addition, several alternatively spliced variant transcripts of TMEM16A were detected. In contrast, TMEM16B expression was very low in smooth muscle. Western blot analysis with different antibodies directed against TMEM16A revealed a number of products with a consistent band at ∼120 kDa, except portal vein, where an 80-kDa band predominated. TMEM16A protein was identified in the smooth muscle layers of 4-μm-thick slices of portal vein, thoracic aorta, and carotid artery. In isolated myocytes, fluorescence specific to a TMEM16A antibody was detected diffusely throughout the cytoplasm, as well as near the membrane. The same antibody used in Western blot analysis of lysates from vascular tissues also recognized an ∼147-kDa mouse TMEM16A-green fluorescent protein (GFP) fusion protein expressed in HEK 293 cells, which correlated to a similar band detected by a GFP antibody. Patch-clamp experiments revealed that I(ClCa) generated by transfection of TMEM16A-GFP in HEK 293 cells displayed remarkable similarities to I(ClCa) recorded in vascular myocytes, including slow kinetics, steep outward rectification, and a response similar to the pharmacological agent niflumic acid. This study shows that TMEM16A expression is robust in murine vascular smooth muscle cells, consolidating the view that this gene is a viable candidate for the native Ca(2+)-activated Cl(-) channel in this cell type.
N. Increased TMEM16A-encoded calcium-activated chloride channel activity is associated with pulmonary hypertension. Pulmonary artery smooth muscle cells (PASMCs) are more depolarized and display higher Ca 2ϩ levels in pulmonary hypertension (PH). Whether the functional properties and expression of Ca 2ϩ -activated ClϪ channels (Cl Ca), an important excitatory mechanism in PASMCs, are altered in PH is unknown. The potential role of Cl Ca channels in PH was investigated using the monocrotaline (MCT)-induced PH model in the rat. Three weeks postinjection with a single dose of MCT (50 mg/kg ip), the animals developed right ventricular hypertrophy (heart weight measurements) and changes in pulmonary arterial flow (pulse-waved Doppler imaging) that were consistent with increased pulmonary arterial pressure and PH. Whole cell patch experiments revealed an increase in niflumic acid (NFA)-sensitive Ca 2ϩ -activated Cl Ϫ current [ICl(Ca)] density in PASMCs from large conduit and small intralobar pulmonary arteries of MCT-treated rats vs. aged-matched saline-injected controls. Quantitative RT-PCR and Western blot analysis revealed that the alterations in I Cl(Ca) were accompanied by parallel changes in the expression of TMEM16A, a gene recently shown to encode for Cl Ca channels. The contraction to serotonin of conduit and intralobar pulmonary arteries from MCT-treated rats exhibited greater sensitivity to nifedipine (1 M), an L-type Ca 2ϩ channel blocker, and NFA (30 or 100 M, with or without 10 M indomethacin to inhibit cyclooxygenases) or T16A Inh-A01 (10 M), TMEM16A/Cl Ca channel inhibitors, than that of control animals. In conclusion, augmented Cl Ca/TMEM16A channel activity is a major contributor to the changes in electromechanical coupling of PA in this model of PH. TMEM16A-encoded channels may therefore represent a novel therapeutic target in this disease. pulmonary arterial tone; TMEM16A; anoctamin-1; Ca 2ϩ -activated Cl Ϫ channel; patch-clamp technique PULMONARY HYPERTENSION (PH) is defined as a sustained high blood pressure (Ͼ25 mmHg at rest and Ͼ30 mmHg during exercise) in the main pulmonary artery (PA) that ultimately leads to failure of the right hand side of the heart and death (4). Characteristic pathophysiological manifestations of PH are enhanced vasoconstriction, thickening of the arterial muscle wall, and a propensity for thrombosis, as a result of changes in all layers of the blood vessel, but little is known about the molecular mechanisms that drive these pathological responses. It is well established that pulmonary arterial smooth muscle cells (PASMCs) from animal models of PH and human PH patients are more depolarized and exhibit a higher intracellular calcium concentration ([Ca 2ϩ ] i ) than cells from healthy individuals and several ionic conductances are altered in PASMCs from animal models of PH and PH patients (4,13,29,43,68,70). Except for one recent study carried out using the chronic hypoxic model of PH in the rat (58), there is little information regarding the potential role of Ca 2ϩ -activa...
The signal transduction pathways regulating smooth-muscle gene expression and production of cytokines in response to proinflammatory mediators are undefined. Cultured human bronchial smooth-muscle cells were treated for 20 h with a cytokine cocktail containing interleukin (IL)-1beta, tumor necrosis factor-alpha, and interferon-gamma. A complementary DNA expression array containing 588 genes was used to follow cytokine-stimulated gene expression. The expression and secretion of the cytokines IL-1beta, IL-6, and IL-8 significantly increased after 20 h of stimulation as measured by relative reverse transcriptase/ polymerase chain reaction, enzyme-linked immunosorbent assay, and Western blotting techniques. Expression of IL-6 and IL-8 was sensitive to SB203580, the specific inhibitor of p38 mitogen-activated protein (MAP) kinase and PD98059, an inhibitor of MAP kinase kinase. Expression of IL-1beta was sensitive only to PD98059. Together, these results demonstrate that the p38 and extracellular signal-regulated protein kinase MAP kinase pathways are required for proinflammatory mediator- induced cytokine expression in airway myocytes. The generation of chemokines and cytokines in airway smooth muscle also provides evidence that smooth-muscle cells have the ability to contribute to the inflammatory response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.