Cytochrome c (Cc) binding to apoptosis protease activation factor-1 (Apaf-1) is a critical activation step in the execution phase of apoptosis. Here we report studies that help define the Cc:Apaf-1 binding surface. It is shown that a large number of Cc residues, including residues 7, 25, 39, 62-65, and 72, are involved in the Cc:Apaf-1 interaction. Mutation of residue 72 eliminated Cc activity whereas mutations of residues 7, 25, 39, and 62-65 showed reduced activity in an additive fashion. The implications of this binding model for both recognition and modulation of protein-protein interactions are briefly discussed.
In the apoptosis pathway in mammals, cytochrome c and dATP are critical cofactors in the activation of caspase 9 by Apaf-1. Until now, the detailed sequence of events in which these cofactors interact has been unclear. Here, we show through fluorescence polarization experiments that cytochrome c can bind to Apaf-1 in the absence of dATP; when dATP is added to the cytochrome c⅐Apaf-1 complex, further assembly occurs to produce the apoptosome. These findings, along with the discovery that the exposed heme edge of cytochrome c is involved in the cytochrome c⅐Apaf-1 interaction, are confirmed through enhanced chemiluminescence visualization of native PAGE gels and through acrylamide fluorescence quenching experiments. We also report here that the cytochrome c⅐Apaf-1 interaction depends highly on ionic strength, indicating that there is a strong electrostatic interaction between the two proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.