Local inhibitory synaptic inputs to neurons of the rat hypothalamic paraventricular nucleus (PVN) were studied by using glutamate microstimulation and conventional intracellular and whole-cell patch-clamp recording in coronal, horizontal, and parasagittal slices of rat hypothalamus. PVN cells were classified as magnocellular or parvocellular neurons on the basis of electrophysiological and post hoc immunohistochemical analyses; GABA-producing neurons were localized with in situ hybridization. Glutamate microstimulation of different sites around the PVN evoked volleys of postsynaptic potentials in 43% of the PVN neurons tested. Some responses to stimulation at each site were blocked by bicuculline, suggesting that they were mediated by the activation of presynaptic GABA neurons. In the coronal plane, presynaptic inhibitory sites were located lateral to the PVN and ventral to the fornix, corresponding to the lateral hypothalamic area and the posterior bed nucleus of the stria terminalis (BNST). In the horizontal plane, presynaptic inhibitory sites were found rostral, lateral, and caudal to the nucleus, corresponding to parts of the anterior hypothalamic area, the posterior BNST, the medial preoptic area, and the dorsomedial hypothalamus. In the parasagittal plane, presynaptic inhibitory neurons were revealed at sites rostral and caudal to the nucleus, corresponding to the medial preoptic area and the dorsomedial hypothalamus, and in a site dorsal to the optic chiasm that included the suprachiasmatic nucleus. These presynaptic sites each contained GABA-producing neurons based on in situ hybridization with a glutamic acid decarboxylase riboprobe and together formed a three-dimensional ring around the PVN. Unexpectedly, both magnocellular and parvocellular neurons received inhibitory synaptic inputs from common sites.
We conducted whole cell voltage-clamp and current-clamp recordings in slices of rat hypothalamus to test for local excitatory synaptic circuits. Local excitatory inputs to neurons of the paraventricular nucleus (PVN) and supraoptic nucleus (SON) were studied with the use of electrical and chemical stimulation. Extracellular electrical stimulation provided indirect evidence of local excitatory circuits. Single stimuli evoked multiple excitatory postsynaptic potentials (EPSPs) or excitatory postsynaptic currents (EPSCs) in some PVN and SON cells, invoking polysynaptic excitatory inputs. Repetitive stimulation (10-20 Hz, 2-10 s) elicited long afterdischarges of EPSPs/EPSCs, suggesting a potentiation of upstream synapses in a polysynaptic circuit. Bath application of metabotropic glutamate receptor agonists provided more conclusive evidence for local excitatory circuits. Metabotropic receptor activation caused an increase in the frequency of EPSPs/EPSCs that was blocked by tetrodotoxin, suggesting that it was mediated by activation of local presynaptic excitatory neurons. The local excitatory inputs to SON and PVN neurons were mediated by glutamate release, because the EPSPs/EPSCs elicited with electrical stimulation and metabotropic receptor activation were blocked by ionotropic glutamate receptor antagonists. Finally, glutamate microstimulation furnished the most direct demonstration of local excitatory synaptic circuits. Glutamate microstimulation of perinuclear sites elicited an increase in the frequency of EPSPs/EPSCs in 13% of the PVN and SON neurons tested. Two sites provided most of the local excitatory synaptic inputs to PVN neurons, the dorsomedial hypothalamus and the perifornical region. These experiments provide converging physiological evidence for local excitatory synaptic inputs to hypothalamic neurons, inputs that may play a role in pulsatile hormone release.
Parvocellular neurones of the hypothalamic paraventricular nucleus (PVN) comprise neurosecretory and non-neurosecretory subpopulations. We labelled neurosecretory neurones with intravenous injection of the retrograde tracer, fluoro-gold, and recorded from fluoro-gold-positive and negative PVN parvocellular neurones in hypothalamic slices. Non-neurosecretory parvocellular neurones generated a low-threshold spike (LTS) and robust T-type Ca2+ current, whereas neurosecretory neurones showed no LTS and a small T-current. LTS neurones were located in non-neurosecretory regions of the PVN, and non-LTS neurones were located in neurosecretory regions of the PVN. These findings indicate that neurosecretory and non-neurosecretory subtypes of parvocellular PVN neurones express distinct membrane electrical properties.
Noradrenergic projections to the hypothalamus play a critical role in the afferent control of oxytocin and vasopressin release. Recent evidence for intrahypothalamic glutamatergic circuits prompted us to test the hypothesis that the excitatory effect of noradrenergic inputs on oxytocin and vasopressin release is mediated in part by local glutamatergic interneurons. The voltage response to norepinephrine (30-300 M) was tested with whole-cell recordings in putative magnocellular neurons of the paraventricular nucleus (PVN) in hypothalamic slices (400 m). Norepinephrine elicited an ␣ 1 receptor-mediated direct depolarization in 23% of the magnocellular neurons tested; however, the most prominent response, seen in 42% of the magnocellular neurons, was an ␣ 1 receptor-mediated increase in the frequency of EPSPs. The norepinephrine-induced increase in EPSPs was blocked by tetrodotoxin and by ionotropic glutamate receptor antagonists, suggesting that norepinephrine excited presynaptic glutamate neurons to cause an increase in spike-mediated transmitter release. The increase in EPSPs also was observed in a surgically isolated PVN preparation (64% of cells) and with microdrop applications of norepinephrine (1 mM, 33% of cells) and glutamate (0.5-1 mM, 28%) in the PVN, indicating that the norepinephrine-sensitive presynaptic glutamate neurons are located within the PVN. Biocytin injection and subsequent immunohistochemical labeling revealed that both oxytocin and vasopressin neurons responded to norepinephrine. Our data indicate that magnocellular neurons of the PVN receive excitatory inputs from intranuclear glutamatergic neurons that express ␣ 1 -adrenoreceptors. These glutamatergic interneurons may serve as an excitatory relay in the afferent noradrenergic control of oxytocin and vasopressin release under certain physiological conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.