The goal of this work is to present a robust optimal control approach, in order to improve the speed error-tracking and control capability of a permanent magnet DC Motor (PMDC) driven wire-feeder systems (WFSs) of gas metal arc welding (GMAW) process. The proposed speed controller employs an optimized fractional-order-proportional+integral+derivative (FOPID) controller that serves to eliminate oscillations, overshoots, undershoots and steady state fluctuations of the PMDC motor and makes the wire-feeder unit (WFU) has fast and stable starting process as well as excellent dynamic characteristics. The fixed controller parameters are meta-heuristically selected via an ant colony optimization (ACO) algorithm. Numerical simulations are performed in Matlab/Simulink environment and the performance of the proposed ACO-FOPID controller is validated. The simulation results clearly demonstrate the significant improvement rendered by the proposed approach in the wire-feeder system's reference tracking performance, torque disturbance rejection capability, and transient recovery time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.