Laser peening without protective coating (LPwC) has been applied to metallic materials using low energy pulses of a Q-switched and frequency-doubled Nd:YAG laser. Compressive residual stresses of several hundred megapascals were imparted on the surface of the materials. Redistribution of the residual stress in the top surface due to thermal loading was evaluated non-destructively by synchrotron radiation of SPring-8. Accelerating stress corrosion cracking (SCC) tests showed that LPwC prohibited SCC of sensitized materials. LPwC largely prolonged the fatigue lives of titanium alloys, aluminum alloys and austenitic stainless steels.
Laser shock peening is a very effective mechanical surface treatment to enhance the fatigue behaviour of highly stressed components. In this work the effect of different laser shock peening conditions on the residual stress depth profile and fatigue behaviour without any sacrificial coating layer is investigated for two high strength titanium alloys, Ti-6Al-4V and Timetal LCB. The results show that the optimization of peening conditions is crucial to obtain excellent fatigue properties. Especially, power density, spot size and coverage severely influence the residual stress profile of laser shock peened Ti-6Al-4V and Timetal LCB specimens. For both alloys, subsurface as well as surface compressive residual stress peaks can be obtained by varying the peening conditions. In general, Timetal LCB exhibits steeper stress gradients than Ti-6Al-4V for identical peening conditions. The main parameters affecting the fatigue life are near-surface cold work and compressive residual stresses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.