In this paper, a friction system with uncertain parameters and coupled to two Nonlinear Energy Sinks (NESs) is studied. The dispersion of some physical parameters due to their uncertain nature may generate a dynamic instability which leads to a Limit Cycle Oscillations (LCO) causing a propensity of squeal. The concept of Targeted Energy Transfer (TET) by means of NESs to mitigate this squealing noise is proposed. In this kind of unstable dynamical system coupled to NES, the transition from harmless regimes (i.e. the LCO is mitigated) to harmful regimes (i.e. the LCO is not mitigated) as a function of the uncertain parameters implies a discontinuity in the steady-state amplitude profiles. In this context, a Multi-Element generalized Polynomial Chaos (ME-gPC) based method is proposed to locate this discontinuity (called mitigation limit) and therefore to predict the Propensity of the system to undergo an Harmless Steady-State Regime (PHSSR). The results obtained with this original method lead to a good compromise between computational cost and accuracy in comparison with a reference method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.