Chlamydia spp. are important causes of human disease for which no effective vaccine exists. These obligate intracellular pathogens replicate in a specialized membrane compartment and use a large arsenal of secreted effectors to survive in the hostile intracellular environment of the host. In this Review, we summarize the progress in decoding the interactions between Chlamydia spp. and their hosts that has been made possible by recent technological advances in chlamydial proteomics and genetics. The field is now poised to decipher the molecular mechanisms that underlie the intimate interactions between Chlamydia spp. and their hosts, which will open up many exciting avenues of research for these medically important pathogens.
SummaryCytolethal distending toxins (CDTs) block cell division by arresting the eukaryotic cell cycle at G2/M. Although previously not recognized in standard BLAST searches, a position-specific iterated (PSI) BLAST search of the protein data bank using CDT polypeptides as query sequences indicated that CdtB bears significant position-specific homology to type I mammalian DNases. The PSI-BLAST sequence alignment reveals that residues of DNase I involved in phosphodiester bond hydrolysis (His134 and His252) are conserved in CdtB as well as their respective hydrogen bond pairs (Glu78 and Asp212). CdtB also contains a pentapeptide motif found in all DNase I enzymes. Further, crude CDT preparations possess detectable DNase activity not associated with identical preparations from control cells. Five CdtB mutations in amino acids corresponding to DNase I active site residues were prepared and expressed together with wild-type CdtA and CdtC polypeptides. Mutation in four of the five DNase-specific active site residues resulted in CDT preparations that lacked DNase activity and failed to induce cellular distension or arrest division of HeLa cells. The fifth mutation, Glu86 (Glu78 in DNase I), retained the ability to induce a moderate level of cell cycle arrest and displayed reduced DNase activity relative to wild-type CDT. Together, these data suggest that the CDT holotoxin has intrinsic DNase activity that is associated with the CdtB polypeptide and that this DNase activity may be responsible for the CDT-induced cell cycle arrest.
SUMMARY Chlamydia trachomatis is a leading cause of genital and ocular infections for which no vaccine exists. Upon entry into host cells, C. trachomatis resides within a membrane bound compartment—the inclusion--and secretes inclusion membrane proteins (Incs) that are thought to modulate the host-bacterium interface. To expand our understanding of Inc function(s), we subjected putative C. trachomatis Incs to affinity purification-mass spectroscopy (AP-MS). We identified Inc-human interactions for 38/58 Incs with enrichment in host processes consistent with Chlamydia’s intracellular lifecycle. There is significant overlap between Inc targets and viral proteins, suggesting common pathogenic mechanisms among obligate intracellular microbes. IncE binds to sorting nexins (SNXs) 5/6, components of the retromer, resulting in SNX5/6 relocalization to the inclusion membrane and enhanced inclusion membrane tubulation. Depletion of retromer components enhances progeny production, revealing that retromer restricts Chlamydia infection. This study demonstrates the value of proteomics in unveiling host-pathogen interactions in genetically challenging microbes.
The obligate intracellular pathogen Chlamydia trachomatis replicates within a membrane-bound inclusion that acquires host sphingomyelin (SM), a process that is essential for replication as well as inclusion biogenesis. Previous studies demonstrate that SM is acquired by a Brefeldin A (BFA)-sensitive vesicular trafficking pathway, although paradoxically, this pathway is dispensable for bacterial replication. This finding suggests that other lipid transport mechanisms are involved in the acquisition of host SM. In this work, we interrogated the role of specific components of BFA-sensitive and BFA-insensitive lipid trafficking pathways to define their contribution in SM acquisition during infection. We found that C. trachomatis hijacks components of both vesicular and non-vesicular lipid trafficking pathways for SM acquisition but that the SM obtained from these separate pathways is being utilized by the pathogen in different ways. We show that C. trachomatis selectively co-opts only one of the three known BFA targets, GBF1, a regulator of Arf1-dependent vesicular trafficking within the early secretory pathway for vesicle-mediated SM acquisition. The Arf1/GBF1-dependent pathway of SM acquisition is essential for inclusion membrane growth and stability but is not required for bacterial replication. In contrast, we show that C. trachomatis co-opts CERT, a lipid transfer protein that is a key component in non-vesicular ER to trans-Golgi trafficking of ceramide (the precursor for SM), for C. trachomatis replication. We demonstrate that C. trachomatis recruits CERT, its ER binding partner, VAP-A, and SM synthases, SMS1 and SMS2, to the inclusion and propose that these proteins establish an on-site SM biosynthetic factory at or near the inclusion. We hypothesize that SM acquired by CERT-dependent transport of ceramide and subsequent conversion to SM is necessary for C. trachomatis replication whereas SM acquired by the GBF1-dependent pathway is essential for inclusion growth and stability. Our results reveal a novel mechanism by which an intracellular pathogen redirects SM biosynthesis to its replicative niche.
To elucidate the mechanisms involved in early events in Chlamydia trachomatis infection, we conducted a large scale unbiased RNA interference screen in Drosophila melanogaster S2 cells. This allowed identification of candidate host factors in a simple non-redundant, genetically tractable system. From a library of 7,216 double stranded RNAs (dsRNA), we identified ∼226 host genes, including two tyrosine kinases, Abelson (Abl) kinase and PDGF- and VEGF-receptor related (Pvr), a homolog of the Platelet-derived growth factor receptor (PDGFR). We further examined the role of these two kinases in C. trachomatis binding and internalization into mammalian cells. Both kinases are phosphorylated upon infection and recruited to the site of bacterial attachment, but their roles in the infectious process are distinct. We provide evidence that PDGFRβ may function as a receptor, as inhibition of PDGFRβ by RNA interference or by PDGFRβ neutralizing antibodies significantly reduces bacterial binding, whereas depletion of Abl kinase has no effect on binding. Bacterial internalization can occur through activation of PDGFRβ or through independent activation of Abl kinase, culminating in phosphorylation of the Rac guanine nucleotide exchange factor (GEF), Vav2, and two actin nucleators, WAVE2 and Cortactin. Finally, we show that TARP, a bacterial type III secreted actin nucleator implicated in entry, is a target of Abl kinase. Together, our results demonstrate that PDGFRβ and Abl kinases function redundantly to promote efficient uptake of this obligate intracellular parasite.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.