This paper suggests how the United Nations Convention to Combat Desertification (UNCCD) community can progressively make use of a flexible framework of analytical approaches that have been recently developed by scientific research. This allows a standardized but flexible use of indicator sets adapted to specific objectives or desertification issues relevant for implementing the Convention. Science has made progress in understanding major issues and proximate causes of dryland degradation such that indicator sets can be accordingly selected from the wealth of existing and documented indicator systems. The selection and combination should be guided according to transparent criteria given by existing indicator frameworks adapted to desertification conceptual frameworks such as the Dryland Development Paradigm and can act as a pragmatic entry point for selecting area-and theme-specific sets of indicators from existing databases. Working on different dryland sub-types through a meaningful stratification is proposed to delimit and characterize affected areas beyond the national level. Such stratification could be achieved by combining existing land use information with additional biophysical and socio-economic data sets, allowing indicator-based monitoring and assessment to be embedded in a framework of specific dryland degradation issues and their impacts on key ecosystem services.
Drought affects more people than any other natural disaster but there is little understanding of how ecosystems react to droughts. This study jointly analyzed spatio-temporal changes of drought patterns with vegetation phenology and productivity changes between 1999 and 2010 in major European bioclimatic zones. The Standardized Precipitation and Evapotranspiration Index (SPEI) was used as drought indicator whereas changes in growing season length and vegetation productivity were assessed using remote sensing time-series of Normalized Difference Vegetation Index (NDVI). Drought spatio-temporal variability was analyzed using a Principal Component Analysis, leading to the identification of four major drought events between 1999 and 2010 in Europe. Correspondence Analysis showed that at the continental scale the productivity and phenology reacted differently to the identified drought events depending on ecosystem and land cover. Northern and Mediterranean ecosystems proved to be more resilient to droughts in terms of vegetation phenology and productivity developments. Western Atlantic regions and Eastern Europe showed strong agglomerations of decreased productivity and shorter vegetation growing season length, indicating that these ecosystems did not buffer the effects of drought well. In a climate change perspective, increase in drought frequency or intensity may result in larger impacts over these ecosystems, thus management and adaptation strategies should be strengthened in these areas of concerns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.