NASA will launch a 950 kg rover, part of the Mars Science Laboratory (MSL) mission, to Mars in October of 2011. The MSL rover is scheduled to land on Mars in August of 2012. The rover employs 31 electric-motor driven rotary actuators to perform a variety of engineering and science functions including: mobility, camera pointing, telecommunications antenna steering, soil and rock sample acquisition and sample processing. This paper describes the MSL rover actuator thermal design. The actuators have stainless steel housings and planetary gearboxes that are lubricated with a "wet" lubricant. The lubricant viscosity increases with decreasing temperature. Warm-up heaters are required to bring the actuators up to temperature (above-55ºC) prior to use in the cold wintertime environment of Mars (when ambient atmosphere temperatures are as cold as-113ºC). Analytical thermal models of all 31 MSL actuators have been developed. The actuators have been analyzed and warm-up heaters have been designed to improve actuator performance in cold environments. Thermal hardware for the actuators has been specified, procured and installed. This paper presents actuator thermal analysis predicts, and describes the actuator thermal hardware and its operation. In addition, warm-up heater testing and thermal model correlation efforts for the Remote Sensing Mast (RSM) elevation actuator are discussed.
On November 26, 2011, NASA launched a large (900 kg) rover as part of the Mars Science Laboratory (MSL) mission to Mars. Eight months later, on August 5, 2012, the MSL rover (Curiosity) successfully touched down on the surface of Mars. As of the writing of this paper, the rover had completed over 200 Sols of Mars surface operations in the Gale Crater landing site (4.5°S latitude). This paper describes the thermal performance of the MSL Rover during the early part of its two Earth-0.year (670 Sols) prime surface mission. Curiosity landed in Gale Crater during early Spring (Ls=151) in the Southern Hemisphere of Mars. This paper discusses the thermal performance of the rover from landing day (Sol 0) through Summer Solstice (Sol 197) and out to Sol 204. The rover surface thermal design performance was very close to pre-landing predictions. The very successful thermal design allowed a high level of operational power dissipation immediately after landing without overheating and required a minimal amount of survival heating. Early morning operations of cameras and actuators were aided by successful heating activities. MSL rover surface operations thermal experiences are discussed in this paper. Conclusions about the rover surface operations thermal performance are also presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.