Observations from past earthquake events indicate that skewed bridges are seismically vulnerable due to induced horizontal in-plane rotations of the girder. To date, however, very limited experimental research has been done on the pounding behaviour of skewed bridges. In this study, shake table tests were performed on a single-frame bridge model with adjacent abutments subjected to uniform ground excitations. Bridges with different skew angles, i.e., 0°, 30°, and 45°, were considered. The pounding behaviour was observed using a pair of pounding and measuring heads. The results reveal that poundings could indeed influence the responses of skewed bridges in the longitudinal and transverse directions differently and thus affect the development of the girder rotations. Ignoring pounding effects, the 30° skewed bridges could experience more girder rotations than the 45° skewed bridges. With pounding, the bridges with a large skew angle could suffer more opening girder displacements than straight bridges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.