An analytical solution is obtained for the problem of two interacting, identical but separated spin 1/2 particles in a time-dependent external magnetic field, in a general case. The solution involves isolating the pseudo-qutrit subsystem from a two-qubit system. It is shown that the quantum dynamics of a pseudo-qutrit system with a magnetic dipole–dipole interaction can be described clearly and accurately in an adiabatic representation, using a time-dependent basis set. The transition probabilities between the energy levels for an adiabatically varying magnetic field, which follows the Landau–Majorana–Stuckelberg–Zener (LMSZ) model within a short time interval, are illustrated in the appropriate graphs. It is shown that for close energy levels and entangled states, the transition probabilities are not small and strongly depend on the time. These results provide insight into the degree of entanglement of two spins (qubits) over time. Furthermore, the results are applicable to more complex systems with a time-dependent Hamiltonian.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.