We investigated temporal and spatial genetic variation in Pacific herring Clupea pallasii collections from six sites in Puget Sound (PS) and the southern Strait of Georgia (SOG), using 12 microsatellite loci. Loci were highly variable with up to 70 alleles per locus (mean ϭ 30.67 alleles), and observed heterozygosity was high (mean ϭ 0.823). Analysis of molecular variance (AMOVA) indicated significant structure, with over twice as much variance among sites as among collection years, although among-site variance was mainly due to Cherry Point and Squaxin Pass collections. In an AMOVA excluding Cherry Point and Squaxin Pass, only temporal variance was significant. With the exception of the Cherry Point and Squaxin Pass collections, pairwise genotypic and F ST tests show some differences among collection years within a site and some genetic overlap among most PS and SOG collections. The Cherry Point and Squaxin Pass collections had no differences in genotypic distributions among collection years, and in cluster analyses the Cherry Point and Squaxin Pass collections each formed groups separate from other PS and SOG collections. Cherry Point herring have a later spawning time than other PS and SOG herring, and Squaxin Pass is physically isolated in southern Puget Sound. We hypothesize that spawn timing differences and spatial isolation generated genetic structure among some Pacific herring in PS and SOG. We suspect that, as in the case of Atlantic herring C. harengus, population genetic structure in Pacific herring in PS and southern SOG is a combination of a larval retention model and a metapopulation model. Because Cherry Point and Squaxin Pass herring are genetically and behaviorally differentiated from other PS and SOG herring populations, this unique variation should be preserved through careful management.
We used 13 microsatellite loci to examine population structure in rainbow trout Oncorhynchus mykiss collected from 20 tributaries and 3 main stems in the greater Spokane River drainage. Populations displayed some excess homozygosity and linkage disequilibrium, which was more pronounced in upper tributary collections and probably the result of small effective population sizes or structuring within tributaries. In general, population structure followed geographic structure; collections from creeks within sub‐drainages were the most closely related, and collections from different tributaries were genetically distinct. Comparisons with cutthroat trout O. clarkii indicated little to no introgression. Comparisons with steelhead (anadromous rainbow trout), coastal rainbow trout O. mykiss irideus, and inland rainbow trout from hatcheries suggested introgression by hatchery fish into some wild populations. Introgression was suspected in populations from stocked tributaries and tributaries that lacked barriers to escaped hatchery fish. Populations from tributaries above barriers that had not been stocked were genetically distinct from hatchery fish and appeared to be native inland redband trout O. mykiss gairdneri.
Programs to rebuild imperiled wild fish populations often include hatchery-born fish derived from wild populations to supplement natural spawner abundance. These programs require monitoring to determine their demographic, biological, and genetic effects. In 1990s in Washington State, the Summer Chum Salmon Conservation Initiative developed a recovery program for the threatened Hood Canal summer chum salmon Evolutionarily Significant Unit (ESU) (the metapopulation) that used in-river spawners (wild fish) for each respective supplementation broodstock in six tributaries. Returning spawners (wild-born and hatchery-born) composed subsequent broodstocks, and tributary-specific supplementation was limited to three generations. We assessed impacts of the programs on neutral genetic diversity in this metapopulation using 16 microsatellite loci and a thirty-year dataset spanning before and after supplementation, roughly eight generations. Following supplementation, differentiation among subpopulations decreased (but not significantly) and isolation by distance patterns remained unchanged. There was no decline in genetic diversity in wild-born fish, but hatchery-born fish sampled in the same spawning areas had significantly lower genetic diversity and unequal family representation. Despite potential for negative effects from supplementation programs, few were detected in wild-born fish. We hypothesize that chum salmon natural history makes them less vulnerable to negative impacts from hatchery supplementation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.