Introduction Massive transfusions are accompanied by an increased incidence of a particularly aggressive and lethal form of acute lung injury (delayed TRALI) which occurs >24 hours after transfusions. In light of recent reports showing that mtDNA DAMPs are potent pro-inflammatory mediators, and that their abundance in the sera of severely injured or septic patients is predictive of clinical outcomes, we explored the idea that mtDNA DAMPs are present in transfusion products and are associated with the occurrence of delayed TRALI. Methods We prospectively enrolled fourteen consecutive severely injured patients that received greater than three units of blood transfusion products and determined if the total amount of mtDNA DAMPs delivered during transfusion correlated with serum mtDNA DAMPs measured after the last transfusion, and whether the quantity of mtDNA DAMPs in the serum predicted development of ARDS. Results We found detectable levels of mtDNA DAMPs in PRBCs (3±0.4 ng/mL), FFP (213.7± 65 ng/mL), and platelets (94.8±69.2), with the latter two transfusion products containing significant amounts of mtDNA fragments. There was a linear relationship between the mtDNA DAMPs given during transfusion and the serum concentration of mtDNA fragments (R2=0.0.74, p<0.01). The quantity of mtDNA DAMPs in serum measured at 24 hours after transfusion predicted the occurrence of ARDS (9.9±1.4 vs 3.3±0.9, p<0.01). Conclusion These data show that FFP and platelets contain large amounts of extracellular mtDNA, that the amount of mtDNA DAMPs administered during transfusion may be a determinant of serum mtDNA DAMP levels, and that serum levels of mtDNA DAMPs after multiple transfusions may predict the development of ARDS. Collectively, these findings support the idea that mtDNA DAMPs in transfusion products significantly contribute to the incidence of ARDS after massive transfusions. Level of Evidence Level 1. (Prognostic and Diagnostic).
BACKGROUND Previous studies in isolated perfused rat lungs have revealed that endothelial barrier disruption after intratracheal administration of Pseudomonas aeruginosa (strain 103; PA103) only occurs after accumulation of extracellular mitochondrial DNA (mtDNA) damage-associated molecular patterns (DAMPs) in the perfusate and is suppressed by addition of DNase to the perfusion medium. Herein, we tested the hypothesis that intratracheal DNase—a route of administration readily translatable to patient with ventilator-associated pneumonia (VAP)—also enhances degradation of mtDNA and prevents bacteria-induced lung injury. METHODS Intratracheal DNase was administered to isolated rat lungs either before or after intratracheal challenge with PA103 to determine if bacteria-induced mtDNA DAMP-dependent lung injury could be prevented or reversed by enhanced mtDNA degradation. To explore whether this concept is translatable to patients with VAP, consecutive patients suspected of VAP were prospectively enrolled. All patients suspected of VAP received a bronchoalveolar lavage (BAL) with quantitative culture for the diagnosis of VAP. Mitochondrial and nuclear DNAs were measured from the BAL. MtDNA DAMPs (i.e., ND6) were measured from serum at time of suspected diagnosis and at 24 to 48 hours afterward. RESULTS Intratracheal PA103 caused significantly increased the vascular filtration coefficient (Kf) and perfusate mtDNA DAMPs. In contrast, lungs pretreated or posttreated with intratracheal DNase were protected from increases in Kf and mtDNA DAMPs. Patients with the diagnosis of VAP had significantly higher mtDNA DAMPs in the BAL (248.70 ± 109.7 vs. 43.91 ± 16.61, p < 0.05, respectively) and in the serum at 24 hours (159.60 ± 77.37 vs. 10.43 ± 4.36, p < 0.05; respectively) when compared with patients that did not have VAP. CONCLUSION These findings in isolated perfused rat lungs and a cohort of severely injured patients reveal an association between bacterial pneumonia and accumulation of mtDNA DAMPs in the lung and serum. Furthermore, administration of intratracheal DNase I prevented and reversed pulmonary endothelial dysfunction evoked by PA103.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.