In recent years, people have tended to use online social platforms, such as Twitter and Facebook, to communicate with families and friends, read the latest news, and discuss social issues. As a result, spam content can easily spread across them. Spam detection is considered one of the important tasks in text analysis. Previous spam detection research focused on English content, with less attention to other languages, such as Arabic, where labeled data are often hard to obtain. In this paper, an integrated framework for Twitter spam detection is proposed to overcome this problem. This framework integrates data augmentation, natural language processing, and supervised machine learning algorithms to overcome the problems of detection of Arabic spam on the Twitter platform. The word embedding technique is employed to augment the data using pre-trained word embedding vectors. Different machine learning techniques were applied, such as SVM, Naive Bayes, and Logistic Regression for spam detection. To prove the effectiveness of this model, a real-life data set for Arabic tweets have been collected and labeled. The results show that an overall improvement in the use of data augmentation increased the macro F1 score from 58% to 89%, with an overall accuracy of 92%, which outperform the current state of the art.
Understanding the customer behavior and perception are important issues for motivating customer satisfaction in marketing analysis. Customer conversation with customer support services through social networks channel provides a wealth of information for understanding customer perception. Therefore, in this paper, a hybrid framework that integrated sentiment analysis and machine learning techniques is developed to analyze interactive conversations among customers and service providers in order to identify the change of polarity of such conversation. This framework aims to detect the conversation polarity switch as well as predict the sentiment of the end of the customer conversation with the service provider. This would help companies to improve customer satisfaction and enhance the customer engagement. The effectiveness of the proposed framework is measured by extracting a real dataset that expresses more than 5000 conversational threads between a customer service agent of an online retail service provider (AmazonHelp) and different customers using the retailer’s twitter public account for the duration of one month. Different classical and ensemble machine learning classifiers were applied, and the results showed that the decision trees outperformed all other techniques.
Understanding the customer behavior and perception are important issues for motivating customer satisfaction in marketing analysis. Customer conversation with customer support services through social networks channel provides a wealth of information for understanding customer perception. Therefore, in this paper, a hybrid framework that integrated sentiment analysis and machine learning techniques is developed to analyze interactive conversations among customers and service providers in order to identify the change of polarity of such conversation. This framework aims to detect the conversation polarity switch as well as predict the sentiment of the end of the customer conversation with the service provider. This would help companies to improve customer satisfaction and enhance the customer engagement. The effectiveness of the proposed framework is measured by extracting a real dataset that expresses more than 5000 conversational threads between a customer service agent of an online retail service provider (AmazonHelp) and different customers using the retailer’s twitter public account for the duration of one month. Different classical and ensemble machine learning classifiers were applied, and the results showed that the decision trees outperformed all other techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.