Selection of a dominant follicle that will ovulate likely occurs by activation of cell survival pathways and suppression of death-promoting pathways in a mechanism involving FSH and its cognate receptor (FSHR). A yeast two-hybrid screen of an ovarian cDNA library was employed to identify potential interacting partners with human FSHR intracellular loops 1 and 2. Among eight cDNA clones identified in the screen, APPL1 (adaptor protein containing PH domain, PTB domain, and leucine zipper motif; also known as APPL or DIP13alpha) was chosen for further analysis. APPL1 appears to coimmunoprecipitate with FSHR in HEK 293 cells stably expressing FSHR (293/FSHR cells), confirming APPL1 as a potential FSHR-interacting partner. The phosphorylation status of members of the phosphatidylinositol-3-kinase (PI3K)/Akt signaling pathway was also examined because of the proposed role of APPL1 in the antiapoptotic PI3K/Akt pathway. FOXO1a, also referred to as forkhead homologue in rhabdomyosarcoma, is a downstream effector in the pathway and tightly linked to expression of proapoptotic genes. FOXO1a, but not the upstream kinase Akt, is rapidly phosphorylated, and FOXO1a is thereby inactivated when 293/FSHR cells are treated with FSH. In addition, FSHR coimmunoprecipitates with Akt. The identification of APPL1 as a potential interactor with FSHR and the finding that FOXO1a is phosphorylated in response to FSH provide a possible link between FSH and PI3K/Akt signaling, which may help to delineate a survival mechanism whereby FSH selects the dominant follicle to survive.
A number of signaling proteins have been demonstrated to interact with follicle stimulating hormone (FSH) receptor (FSHR), including APPL1, 14-3-3τ and Akt2. To further define the repertoire of proteins involved in FSH-induced signal transduction, several signaling and adapter proteins were examined for the ability to associate with FSHR. This report shows that, in addition to APPL1, FSHR interacts with FOXO1a and APPL2. Moreover, APPL1 and APPL2 associate with one another via the N-terminus of APPL1, presumably via the BAR domain. The interactions between FSHR and APPL2 and between FSHR and FOXO1a evidently are distinct since FOXO1a does not associate with either APPL1 or with APPL2. Though APPL1 and APPL2 show some similarity in primary sequence, APPL1 associates with Akt2, whereas APPL2 does not. This is the first documented difference in function between APPL1 and APPL2. These results suggest that FSHR, APPL1, APPL2, Akt2 and FOXO1a are organized into distinct scaffolding networks in the cell. Accordingly, the spatial organization of signaling and adapter proteins with FSHR likely facilitates and finely regulates the signal transduction induced by FSH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.