It is suggested that mechanoreceptors in muscle play an important role in the exercise pressor reflex. However, it has not been verified whether isolated stimulation of the mechanoreceptors can induce responses in muscle sympathetic nerve activity (MSNA) in young healthy individuals. We tested the hypothesis that passive stretch of muscle can evoke an increase in MSNA in healthy individuals. In 12 young subjects, leg calf muscles were passively stretched, or actively contracted for 5 s followed by a 15-25 s (random length) relaxation period. Stretch and contraction were each repeated 25 times. MSNA, heart rate and blood pressure were analysed, and averaged according to the onset of the force on a beat-by-beat basis. At the 1st to the 3rd heart beat from the onset of stretch, MSNA (199 ± 30%, P < 0.05) as well as heart rate (102.5 ± 0.7%, P < 0.05) increased transiently but significantly from the prior stretch baseline (100%), followed (from 3rd to 7th beat from the onset of stretch) by a transient increase in mean blood pressure (101.9 ± 0.3%, P < 0.05) from the baseline. Similar response patterns were observed during active muscle contractions. The present data show that MSNA responses to isolated stimulation of mechanoreceptors are measurable. Because of baroreflex engagement, the magnitude of the response is small and transient, and the haemodynamic consequences using this protocol may be limited.
Key points• Peripheral arterial disease (PAD) is a common and debilitating condition linked with heightened risk of cardiovascular mortality.• Dynamic exercise elicits augmented blood pressure responses in PAD that could put the patient at risk for adverse event but the underlying mechanisms are unknown.• The exercise pressor reflex is comprised of group III and group IV muscle afferents that increase their discharge in response to mechanical and/or chemical stimulation.• In this study, we demonstrate that mechanically sensitive muscle afferents cause augmented reflex elevations in blood pressure during dynamic plantar flexion exercise in PAD. These responses occur prior to claudication pain, are related to disease severity and can be partly reduced by acute antioxidant infusion.Abstract Exaggerated blood pressure (BP) responses to dynamic exercise predict cardiovascular mortality in patients with peripheral arterial disease (PAD). However, the underlying mechanisms are unclear and no attempt has been made to attenuate this response using antioxidants. Three physiological studies were conducted in patients with PAD and controls. In Protocol 1, subjects underwent 4 min of low-intensity (0.5-2.0 kg), rhythmic plantar flexion in the supine posture. In Protocol 2, patients with PAD received high-dose ascorbic acid intravenously before exercise. In Protocol 3, involuntary exercise was conducted via electrical stimulation of the tibial nerve. The primary outcome measure was mean arterial pressure (MAP) during the first 20 s of exercise (i.e. the onset of sympathoexcitation by muscle afferents). Compared to controls, patients with PAD had significantly greater MAP during plantar flexion, particularly at 0.5 kg with the most affected leg (11 ± 2 vs. 2 ± 1 mmHg) as well as the least affected leg (7 ± 1 vs. 1 ± 1 mmHg). This augmented response occurred before the onset of claudication pain and was attenuated by ∼50% with ascorbic acid. Electrically evoked exercise also elicited larger haemodynamic changes in patients with PAD compared to controls. Further, the MAP during 0.5 kg plantar flexion inversely correlated with the ankle-brachial index, indicating that patients with more severe resting limb ischaemia have a larger BP response to exercise. The BP response to low-intensity exercise was enhanced in PAD. Chronic limb ischaemia may sensitize muscle afferents and potentiate the BP response to muscle contraction in a dose-dependent manner.
Based on animal studies, it has been speculated that muscle metabolites sensitize muscle mechanoreceptors and increase mechanoreceptor-mediated muscle sympathetic nerve activity (MSNA). However, this hypothesis has not been directly tested in humans. In this study, we tested the hypothesis that in healthy individuals passive stretch of forearm muscles would evoke significant increases in mean MSNA when muscle metabolite concentrations were increased. In 12 young healthy subjects, MSNA, ECG, and blood pressure were recorded. Subjects performed static fatiguing isometric handgrip at 30% maximum voluntary contraction followed by 4 min of postexercise muscle ischemia (PEMI). After 2 min of PEMI, wrist extension (i.e., wrist dorsiflexion) was performed. The static stretch protocol was also performed during 1) a freely perfused condition, 2) ischemia alone, and 3) PEMI after nonfatiguing exercise. Finally, repetitive short bouts of wrist extension were also performed under freely perfused conditions. This last paradigm evoked transient increases in MSNA but had no significant effect on mean MSNA over the whole protocol. During the PEMI after fatiguing handgrip, static stretch induced significant increases in MSNA (552 +/- 74 to 673 +/- 90 U/min, P < 0.01) and mean blood pressure (102 +/- 2 to 106 +/- 2 mmHg, P < 0.001). Static stretch performed under the other three conditions had no significant effects on mean MSNA and blood pressure. The present data verified that in healthy humans mechanoreceptor(s) stimulation evokes significant increases in mean MSNA and blood pressure when muscle metabolite concentrations are increased above a certain threshold.
Animal studies suggest that prostaglandins in skeletal muscles stimulate afferents and contribute to the exercise pressor reflex. However, human data regarding a role for prostaglandins in this reflex are varied, in part because of systemic effects of pharmacological agents used to block prostaglandin synthesis. We hypothesized that local blockade of prostaglandin synthesis in exercising muscles could attenuate muscle sympathetic nerve activity (MSNA) responses to fatiguing exercise. Blood pressure (Finapres), heart rate, and MSNA (microneurography) were assessed in 12 young healthy subjects during static handgrip and postexercise muscle ischemia (PEMI) before and after local infusion of 6 mg of ketorolac tromethamine in saline via Bier block (regional intravenous anesthesia). In the second experiment (n ϭ 10), the same amount of saline was infused via the Bier block. Ketorolac Bier block decreased the prostaglandins synthesis to ϳ33% of the baseline. After ketorolac Bier block, the increases in MSNA from the baseline during the fatiguing handgrip was significantly lower than that before the Bier block (before ketorolac: ⌬502 Ϯ 111; post ketorolac: ⌬348 Ϯ 62%, P ϭ 0.016). Moreover, the increase in total MSNA during PEMI after ketorolac was significantly lower than that before the Bier block (P ϭ 0.014). Saline Bier block had no similar effect. The observations indicate that blockade of prostaglandin synthesis attenuates MSNA responses seen during fatiguing handgrip and suggest that prostaglandins contribute to the exercise pressor reflex.prostaglandins; exercise; nervous system; sympathetic; regional blood flow EXERCISE ELICITS INCREASES in muscle sympathetic nerve activity (MSNA), peripheral vasoconstriction, heart rate, cardiac output, and blood pressure (27,29). It is believed that inputs from mechanically and chemically sensitive afferents from the exercising muscles are primarily responsible for this exercise pressor reflex (19,28,29). Group III and IV afferent fibers in muscles are suggested to be involved in this reflex (21,35). Kaufman and colleagues demonstrated that anesthetized cat triceps surae group III muscle afferents were predominantly mechanically sensitive, whereas unmyelinated group IV muscle afferents were chemically sensitive (15,16).A number of substances are potential muscle afferent stimulants (14). Metabolism of free arachidonic acid by cyclooxygenases (COX) and lipoxygenases leads to the formation of prostaglandins, thromboxanes, and leukotrienes. It is known that arachidonic acid stimulates group III mechano-sensitive afferent nerve fibers in the anesthetized cat (26). Moreover, prostaglandin levels rise during exercise in healthy humans (36). Animal studies showed that arachidonic acid and the metabolites of the COX (i.e., prostaglandins) stimulate muscle afferents and can alter the pressor response to muscle contraction (12,25,26,32). Middlekauff et al. showed that COX inhibition with intrabrachial arterial indomethacin eliminated the reflex sympathetic activation during low levels o...
We have recently shown that a saline infusion in the veins of an arterially occluded human forearm evokes a systemic response with increases in muscle sympathetic nerve activity (MSNA) and blood pressure. In this report, we examined whether this response was a reflex that was due to venous distension. Blood pressure (Finometer), heart rate, and MSNA (microneurography) were assessed in 14 young healthy subjects. In the saline trial (n = 14), 5% forearm volume normal saline was infused in an arterially occluded arm. To block afferents in the limb, 90 mg of lidocaine were added to the same volume of saline in six subjects during a separate visit. To examine whether interstitial perfusion of normal saline alone induced the responses, the same volume of albumin solution (5% concentration) was infused in 11 subjects in separate studies. Lidocaine abolished the MSNA and blood pressure responses seen with saline infusion. Moreover, compared with the saline infusion, an albumin infusion induced a larger (MSNA: Δ14.3 ± 2.7 vs. Δ8.5 ± 1.3 bursts/min, P < 0.01) and more sustained MSNA and blood pressure responses. These data suggest that venous distension activates afferent nerves and evokes a powerful systemic sympathoexcitatory reflex. We posit that the venous distension plays an important role in evoking the autonomic adjustments seen with postural stress in human subjects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.