Prolonged agonist exposure often induces downregulation of G protein-coupled receptors (GPCRs). Although downregulation of the prototypical beta(2)-adrenergic receptor (beta(2)AR) has been extensively studied, the underlying mechanisms have yet to be resolved. As even less is known about the beta(1)-subtype, we investigated the downregulation of human beta(1)AR stably expressed in Chinese hamster fibroblasts in response to the agonist isoproterenol or the cell-permeable, chlorophenylthio-cAMP (CPT-cAMP). While either effector mediated decreases in both beta(1)AR binding activity and steady-state beta(1)AR mRNA levels, there were significant differences in their actions. Whereas agonist-mediated downregulation of beta(1)AR followed first-order kinetics, that induced by CPT-cAMP was delayed for several hours and approximately 50% of the former. Furthermore, agonist but not CPT-cAMP induced beta(1)AR internalization, and inhibiting internalization also suppressed agonist-mediated downregulation. The latter, however, was more sensitive than the former to agonist concentration (EC(50) of 0.3 vs 48 nM). Thus, at < or =1 nM agonist, downregulation occurred without internalization and with a pattern similar to that mediated by CPT-cAMP. The amounts of beta(1)AR downregulated or internalized were proportional to initial receptor levels but reached saturation at approximately 2 and 3 pmol/mg of protein, respectively. The fate of beta(1)AR protein during downregulation was determined by immunoblotting with anti-C-terminal antibodies. In agonist-treated cells, beta(1)AR protein disappeared with time and without any immunoreactive degradation products. Agonist-mediated downregulation of the human beta(1)AR appears to be a complex process that consists of both agonist- and cAMP-specific components. The former involves both receptor internalization and degradation whereas the latter involves a reduction in receptor mRNA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.