For this study, we evaluated two training interventions for improving gait parameters in individuals with poststroke hemiplegia using a training methodology that required them to step over objects. Gait velocity, step length, ability to step over obstacles, and walking endurance were compared before and after 2 weeks of training and 2 weeks after cessation of training. Twenty subjects with poststroke hemiplegia completed six intervention sessions in which they were asked to step over either virtual objects while walking on a motorized treadmill or real foam objects on a 10 m walkway. With the virtual object training, if either foot collided with the virtual object, a tone sounded and a vibrotactile stimulus was applied to the colliding foot. All subjects tolerated the training sessions well, and no incidences of falling or undue cardiovascular responses occurred. The virtual obstacle training generated greater improvements in gait velocity compared with real training (20.5% vs. 12.2% improvement) during the fast walk test (p < 0.01). Improvements in gait velocity for both training methods were similar in the self-selected walk test (33.3% vs. 34.7% improvement). Overall, subjects showed clinically meaningful changes in gait velocity, stride length, walking endurance, and obstacle clearance capacity as a result of either training method. These changes persisted for 2 weeks posttraining. The inclusion of enhanced safety and visual augmentation may be responsible for the effectiveness of the virtual object intervention. These results demonstrate preliminary evidence for clinical effectiveness of obstacle training for improving gait velocity poststroke. In addition, these results provide evidence for enhanced clinical performance with virtual obstacle training.Abbreviations: CVA = cerebrovascular accident, HIV = human immunodeficiency virus, MS = multiple sclerosis, OG = real obstacle training, SCI = spinal cord injury, SD = standard deviation, SS = self-selected pace, VA = Department of Veterans Affairs, VR = virtual obstacle training, VRSL = Virtual Reality Scripting Language.
The purpose of this study was to determine the effects of limiting ankle motion on pedal forces. Sixteen adults pedaled an instrumented ergometer against constant cadence and frictional load while wearing hinged braces. Ankle motion was limited under four randomly assigned conditions: both braces unlocked (UL), only the preferred leg (PL) brace locked, only the nonpreferred leg (NPL) brace locked, and braces on both legs (BL) locked. Measurements of pedal force, crank, and pedal angles were sampled at 200/s for 20 s. With both braces locked, resultant force mean magnitude decreased during the downstroke, due to reduced radial crank force. Asymmetry between PL and NPL decreased during the power phase when only PL was braced but increased when only NPL was braced. It was concluded that constrained ankle motion, as may occur with ankle injury or hemiplegia, reduces the ability to transmit power during the downstroke while enhancing ability during the upstroke.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.