One of the major drawbacks to doing stereotactic radiosurgery with a linear accelerator is the long time required to deliver the target dose. Single fractions of 25 Gy delivered at the isocenter and at depth in the skull may require beam times in excess of 15 min for a typical linear accelerator with a maximum dose rate of 250 cGy/min in tissue. In an effort to decrease the treatment time for this technique, the flattening filter has been removed from an AECL Therac-6 linear accelerator and the characteristics of the resulting beam have been measured. Flatness is acceptable for the field sizes used with this technique and the dose rate is increased by a factor of 2.75.
Lesions of glutamatergic afferents to the nucleus accumbens have been reported to block psychostimulant-induced behavioral sensitization. However, thalamic glutamatergic projections to the nucleus accumbens have received little attention in the context of psychostimulant actions. We examined the effects of acute amphetamine and cocaine administration on expression of Fos protein in the thalamic paraventricular nucleus (PVT), which provides glutamatergic inputs to the nucleus accumbens and also receives dopaminergic afferents. Immunoblot and immunohistochemical studies revealed that both psychostimulants dose-dependently increased PVT Fos expression. PVT neurons retrogradely labeled from the nucleus accumbens were among the PVT cells that showed a Fos response to amphetamine. D 2 family dopamine agonists, including low doses of the D 3 -preferring agonist 7-OH-DPAT, increased the numbers of Fos-like-immunoreactive neurons in the PVT. Conversely, the effects of cocaine and amphetamine on PVT Fos expression were blocked by pretreatment with the dopamine D 2/3 antagonist raclopride. Because PVT neurons express D 3 but not other dopamine receptor transcripts, it appears that psychostimulants induce Fos in PVT neurons through a D 3 dopamine receptor. We suggest that the PVT may be an important part of an extended circuit subserving both the arousing properties and reinforcing aspects of psychostimulants.
The nucleus accumbens of the rat consists of several subregions that can be distinguished on the basis of histochemical markers. For example, the calcium-binding protein calbindin D28k is a useful marker of the core compartment of the nucleus accumbens. Calretinin, another calcium-binding protein, is found in a dense fibre plexus in the accumbal shell and septal pole regions. The source of the accumbal calretinin innervation is not known. We examined the distribution of calretinin in the nucleus accumbens and used tract-tracing and lesion methods to determine the source of this calretinin innervation. Intense calretinin immunoreactivity was present in the medial shell, but the density of calretinin axons diminished sharply in the ventrolateral shell. Regions of dense calretinin immunostaining and those areas with calbindin-like immunoreactive cell bodies were generally segregated in the nucleus accumbens, although some overlap in the transition region between the core and shell was seen. Small clusters of calretinin-immunoreactive fibres were seen in the core, where they were restricted to calbindin-negative patches. Injections of the anterograde tracer biotinylated dextran amine into the paraventricular thalamic nucleus labelled fibres in calretinin-rich regions of the accumbens. Conversely, injections of Fluoro-gold into the accumbal shell retrogradely labelled numerous cells in the paraventricular thalamic nucleus that were calretinin-immunoreactive. Electrolytic lesions of the paraventricular thalamic nucleus reduced calretinin levels in the shell by approximately 80%. These data indicate that the calretinin innervation of the nucleus accumbens is derived primarily from the thalamic paraventricular nucleus, and marks accumbal territories that are largely complementary to those defined by calbindin.
An emerging body of literature suggests a high incidence of rapid relapse in schizophrenic patients when clozapine treatment is discontinued. This psychosis is relatively resistant to haloperidol and other neuroleptics, even in patients who had previously responded well to neuroleptics. The present data may shed light on the central sites associated with and perhaps model certain aspects of the relapse associated with clozapine discontinuation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.