Cities across the globe recognise their role in climate mitigation and are acting to reduce carbon emissions. Knowing whether cities set ambitious climate and energy targets is critical for determining their contribution towards the global 1.5°C target, partly because it helps to identify areas where further action is necessary. This paper presents a comparative analysis of the mitigation targets of 327 European cities, as declared in their local climate plans. The sample encompasses over 25% of the EU population and includes cities of all sizes across all Member States, plus the UK. The study analyses whether the type of plan, city size, membership of climate networks, and its regional location are associated with different levels of mitigation ambition. Results reveal that 78% of the cities have a GHG emissions reduction target. However, with an average target of 47%, European cities are not on track to reach the Paris Agreement: they need to roughly double their ambitions and efforts. Some cities are ambitious, e.g. 25% of our sample (81) aim to reach carbon neutrality, with the earliest target date being 2020. 90% of these cities are members of the Climate Alliance and 75% of the Covenant of Mayors. City size is the strongest predictor for carbon neutrality, whilst climate network(s) membership, combining adaptation and mitigation into a single strategy, and local motivation also play a role. The methods, data, results and analysis of this study can serve as a reference and baseline for tracking climate mitigation ambitions across European and global cities. Highlights• 78% of cities have a mitigation plan with targets (avg. 47% GHG reduction)• Only 25% of cities strive for carbon neutrality, most by 2050, avg. by 2045 • 90% of cities striving for carbon neutrality are members of a climate network • Ambition is driven by city size, climate networks, M-A combination, local motivation • European cities must double their ambitions to meet the aims set by the Paris Agreement
Abstract:The implementation of renewable energy policies is lagging behind in The Netherlands. While several Dutch cities have ambitious goals for reducing greenhouse gas (GHG) emissions, the implementation of renewable energy projects has been rather slow. The main reasons for this are the limited institutional capacities of local decision-makers, low levels of social acceptance of renewable-energy technologies, and limited opportunities for engagement of communities in decision-making processes. In order to address these issues we have developed an interactive planning support tool named COLLAGE for stakeholder participation in local renewable-energy planning. The goal of this paper is to analyze whether the COLLAGE tool helps to increase community engagement in renewable-energy projects and planning by increasing awareness and addressing social learning issues related to renewable-energy options. We tested the tool in a series of workshops with stakeholders and citizens from the city of Enschede, The Netherlands. The workshop results show that the tool helped involve stakeholders and communities in deciding where to locate renewable-energy facilities. It increased community members' awareness of the benefits of and requirements for renewable energy by disclosing the spatial consequences of overall municipal goals. We conclude that the COLLAGE tool can be an important building block towards new local energy governance.
Highlights We conducted an expert survey about wind energy resistance in planning. Resistance links to planning quality in four supra-national European regions. Landscape encroachment is a major reason for resistance in most European regions. Lack of social justice ranks high in East-and South-Europe. Comprehensive strategic planning potentially reduces problems with resistance.
Purpose In Mexico, only 19.3 per cent of industrial water is treated (Green-Peace, 2014, pp. 3-4), whereas municipal treatment levels are approximately 50 per cent (CONAGUA, 2014a). This paper aims to focus on how the wastewater treatment plant policy, from a circular economy perspective, is affected by the governance context at the Presa Guadalupe sub-basin. Circular economy can contribute to water innovations that help in improving water quality. However, such benefits are not easily achieved. This case provides an example of the complexity and challenges that the implementation of a circular economy model can face. Design/methodology/approach Data are collected via semi-structured in-depth interviews with the stakeholders that are members of the Presa Guadalupe Commission. The contextual interaction theory (CIT) is the theoretical basis for this analysis (Boer de and Bressers, 2011; Bressers, 2009). Findings The findings show that the wastewater treatment plant policy plays an important role in a circular economy model. Some incentives towards a circular economy model are already in place; however, the hurdles of a top-down implementation perspective, low availability of resources, prioritisation of short-term results, lack of enforcement of the “polluter pays” principle and a linear model of water systems need to be overcome. If Mexico wants to move towards a circular economy model and if the government wants to enforce sustainable development principles, wastewater treatment is a challenge that must be addressed. Originality/value There are few studies in the circular economy literature that have analysed its implementation under a governance arrangement perspective.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.