Cornelia de Lange syndrome (CdLS; OMIM 122470) is a dominantly inherited multisystem developmental disordercharacterized by growth and cognitive retardation; abnormalities of the upper limbs; gastroesophageal dysfunction; cardiac, ophthalmologic and genitourinary anomalies; hirsutism; and characteristic facial features 1-3 . Genital anomalies, pyloric stenosis, congenital diaphragmatic hernias, cardiac septal defects, hearing loss and autistic and selfinjurious tendencies also frequently occur 2 . Prevalence is estimated to be as high as 1 in 10,000 (ref. 4). We carried out genome-wide linkage exclusion analysis in 12 families with CdLS and identified four candidate regions, of which chromosome 5p13.1 gave the highest multipoint lod score of 2.7. This information, together with the previous identification of a child with CdLS with a de novo t(5;13)(p13.1;q12.1) translocation, allowed delineation of a 1.1-Mb critical region on chromosome 5 for the gene mutated in CdLS. We identified mutations in one gene in this region, which we named NIPBL, in four sporadic and two familial cases of CdLS. We characterized the genomic structure of NIPBL and found that it is widely expressed in fetal and adult tissues. The fly homolog of NIPBL, Nipped-B, facilitates enhancer-promoter communication and regulates Notch signaling and other developmental pathways in Drosophila melanogaster 5 .CdLS is a dominantly inherited disorder with characteristic facial appearance, limb defects ( Fig. 1) and growth and cognitive retardation. We carried out a genome-wide linkage analysis in nine families with CdLS with more than one affected family member. Under a model of genetic homogeneity, we used a linkage exclusion mapping approach,
The Cornelia de Lange syndrome (CdLS) is a multisystem developmental disorder characterized by facial dysmorphia, upper-extremity malformations, hirsutism, cardiac defects, growth and cognitive retardation, and gastrointestinal abnormalities. Both missense and protein-truncating mutations in NIPBL, the human homolog of the Drosophila melanogaster Nipped-B gene, have recently been reported to cause CdLS. The function of NIPBL in mammals is unknown. The Drosophila Nipped-B protein facilitates long-range enhancer-promoter interactions and plays a role in Notch signaling and other developmental pathways, as well as being involved in mitotic sister-chromatid cohesion. We report the spectrum and distribution of NIPBL mutations in a large well-characterized cohort of individuals with CdLS. Mutations were found in 56 (47%) of 120 unrelated individuals with sporadic or familial CdLS. Statistically significant phenotypic differences between mutation-positive and mutation-negative individuals were identified. Analysis also suggested a trend toward a milder phenotype in individuals with missense mutations than in those with other types of mutations.
Immunohistochemical analysis of cyclin-dependent kinase inhibitor 1C (CDKN1C, p57, Kip2) expression and molecular genotyping accurately classify hydatidiform moles into complete and partial types and distinguish these from non-molar specimens. Characteristics of a prospective series of all potentially molar specimens encountered in a large gynecologic pathology practice are summarized. Initially, all specimens were subjected to both analyses; this was later modified to triage cases for genotyping based on p57 results: p57-negative cases diagnosed as complete hydatidiform moles without genotyping; all p57-positive cases genotyped. Of the 678 cases, 645 were definitively classified as complete hydatidiform mole (201), partial hydatidiform mole (158), non-molar (272), and androgenetic/biparental mosaic (14); 33 were unsatisfactory, complex, or problematic. Of the 201 complete hydatidiform moles, 104 were p57-negative androgenetic and an additional 95 were p57-negative (no genotyping), 1 was p57-positive (retained maternal chromosome 11) androgenetic, and 1 was p57-non-reactive androgenetic; 90 (85%) of the 106 genotyped complete hydatidiform moles were monospermic and 16 were dispermic. Of the 158 partial hydatidiform moles, 155 were diandric triploid, with 154 p57-positive, 1 p57-negative (loss of maternal chromosome 11), and 1 p57-non-reactive; 3 were triandric tetraploid, with 2 p57-positive and 1 p57-negative (loss of maternal chromosome 11). Of 155 diandric triploid partial hydatidiform moles, 153 (99%) were dispermic and 2 were monospermic. Of the 272 non-molar specimens, 259 were p57-positive biparental diploid, 5 were p57-positive digynic triploid, 2 were p57-negative biparental diploid (no morphological features of biparental hydatidiform mole), and 6 were p57-non-reactive biparental diploid. Of the 14 androgenetic/biparental mosaics with discordant p57 expression, 6 were uniformly mosaic and 8 had a p57-negative androgenetic molar component. p57 expression is highly correlated with genotyping, serves as a reliable marker for diagnosis of complete hydatidiform moles, and identifies androgenetic cell lines in mosaic conceptions. Cases with aberrant and discordant p57 expression can be correctly classified by genotyping.
The Cornelia de Lange syndrome (CdLS) (OMIM# 122470) is a dominantly inherited multisystem developmental disorder. The phenotype consists of characteristic facial features, hirsutism, abnormalities of the upper extremities ranging from subtle changes in the phalanges and metacarpal bones to oligodactyly and phocomelia, gastroesophageal dysfunction, growth retardation, and neurodevelopmental delay. Prevalence is estimated to be as high as 1 in 10,000. Recently, mutations in NIPBL were identified in sporadic and familial CdLS cases. To date, mutations in this gene have been identified in over 45% of individuals with CdLS. NIPBL is the human homolog of the Drosophila Nipped-B gene. Although its function in mammalian systems has not yet been elucidated, sequence homologs of Nipped-B in yeast (Scc2 and Mis4) are required for sister chromatid cohesion during mitosis, and a similar role was recently demonstrated for Nipped-B in Drosophila. In order to evaluate NIPBL role in sister chromatid cohesion in humans, metaphase spreads on 90 probands (40 NIPBL mutation positive and 50 NIPBL mutation negative) with CdLS were evaluated for evidence of precocious sister chromatid separation (PSCS). We screened 50 metaphases from each proband and found evidence of PSCS in 41% (compared to 9% in control samples). These studies indicate that NIPBL may play a role in sister chromatid cohesion in humans as has been reported for its homologs in Drosophila and yeast.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.