There is a need for the development of sustainable, nonchemical tick management strategies. Mycoacaricide and mycoinsecticide product development worldwide has focused primarily on fungi in the genera Beauveria (Hypocreales: Cordycipitaceae) and Metarhizium (Hypocreales: Clavicipitaceae). Microbial biopesticides containing entomopathogenic fungi have potential in tick management. However, despite considerable progress in the development of fungal biopesticides over the past 20 years, the establishment of commercial products available for use against ticks continues to be slow. We reviewed published scientific literature and compiled a comprehensive list of reports of the effectiveness of commercial biopesticides based on the fungal genera Metarhizium and Beauveria and registered for use in the USA against ixodid ticks under laboratory and field conditions. We also report on results when these biopesticides were used as a part of integrated tick management. Until efficacious fungus-based products become more available, tick management will rely primarily on synthetic chemical acaricides, with natural-product acaricides as the alternative.
Western flower thrips (WFT), Frankliniella occidentalis, is one of the most destructive pests of vegetables, fruits and ornamental crops worldwide, causing extensive damage by direct feeding of the crop and transmitting economically important viruses. Despite the successes of biocontrol agents to control WFT, more efficient and cost-effective ways must be found to encourage grower adoption of integrated pest management. A sustainable fungal treatment was developed to preserve fungal inoculum in potting soil and reduce thrips populations. Combining cooked, oven-dried millet with BotaniGard® (a commercial form of Beauveria bassiana strain GHA) to potting soil increased spore production and persistence of the fungus in the soil. In treated pots with millet, spore concentrations were 3–4 times greater after 30 days compared with spore yields at 10 days. The number of WFT adults was significantly lower in the marigold pots treated with GHA mix + millet than untreated controls, 12% and 10% in treated pots and 70% and 68% in untreated pots in sterile and non-sterile soil, respectively. Incorporation of millet in the potting mix enhanced the effect of the fungal treatments by providing a nutritive substrate on which the fungus could become established. This method is relatively inexpensive and easy for growers to use in greenhouses because granular formulations of B. bassiana are not commercially available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.