Within a species, ontogenetic and genetic variation in defensive chemistry can provide the basis for natural selection from different predator types. The osmeterial chemistry of fifth (last) instar Papilio glaucus caterpillars is known to differ qualitatively from the composition of early instar caterpillars. However, the osmeterial chemistry of early instar caterpillars has not been thoroughly characterized and may change as the caterpillars undergo their first three molts. We have used GC/MS to identify a suite of about 50 different terpene compounds in the osmeterial secretions of P. glaucus caterpillars, and found the relative amounts of these compounds changed significantly with each molt. These quantitative changes preceded the more dramatic qualitative switch to the production of 2-methylbutyric and isobutyric acids after the molt to the fifth instar. We also examined the effects of diet and genetic background on the relative quantities of 15 terpenes present in the secretions of third instar caterpillars. Parentage was found to affect the percentages of many more of the individual components than did diet, although both exerted an effect. The ontogenetic and genetic variations in the composition of the osmeterial secretions appear to have an effect on would-be predators. In the laboratory, terpene secretion was found to discourage attack by ants, whereas the switch from terpene to acid production rendered the caterpillars less palatable to a larger predator, the green anole. In the field, the presence of functional osmeteria did not seem to dramatically increase survival in a field study, and only a small, non-significant advantage was seen. Similarly, field data was suggestive that parentage might affect the likelihood of survival in a natural setting, but the stage of the caterpillar and the field site significantly affected survivorship. Further studies with greater replicates will be needed to determine whether and to what extent chemical differences in osmeterial components as well as behavior contribute to differences in outcomes in the field.
Papilio glaucus caterpillars encounter a diverse array of sesquiterpene lactones, including parthenolide, in the leaves of host plants Liriodendron tulipifera and Magnolia virginiana. These compounds are toxic to unadapted herbivores, and the development of P. glaucus caterpillars likely depends on their ability to excrete or detoxify them efficiently. A new metabolite of parthenolide, 2-alpha-hydroxydihydroparthenolide, identified by crystal structure determination and nuclear magnetic resonance, was present in the waste of the caterpillars. The parent compound was modified by the reduction of an alpha-methylene group, rendering the compound less reactive, and the addition of a hydroxyl group, which increases the polarity and prepares it for the conjugation reactions of phase II metabolism. Unmetabolized parthenolide was also present in large amounts in waste. P. glaucus larvae are apparently capable of excreting intact sesquiterpene lactones and sesquiterpene lactone metabolites during consumption of foliage rich in these compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.