Oligodeoxyribonucleoside methylphosphonates which have sequences complementary to the initiation codon regions of N, NS, and G vesicular stomatitis virus (VSV) mRNAs were tested for their ability to inhibit translation of VSV mRNA in a cell-free system and in VSV-infected mouse L cells. In a rabbit reticulocyte lysate cell-free system, the oligomers complementary to N (oligomer I) and NS (oligomer II) mRNAs inhibited translation of VSV N and NS mRNAs whereas oligomer III had only a slight inhibitory effect on N protein synthesis. At 100 and 150 microM, oligomer I specifically inhibited N protein synthesis in the lysate. In contrast, at 150 microM, oligomer II inhibited both N and NS protein synthesis. This reduced specificity of inhibition may be due to the formation of partial duplexes between oligomer II and VSV N mRNA. The oligomers had little or no inhibitory effects on the synthesis of globin mRNA in the same lysate system. Oligomers I-III specifically inhibited the synthesis of all five viral proteins in VSV-infected cells in a concentration-dependent manner. The oligomers had no effects on cellular protein synthesis in uninfected cells nor on cell growth. An oligothymidylate which forms only weak duplexes with poly(rA) had just a slight effect on VSV protein synthesis and yield of virus. Oligomers I-III have extensive partial complementarity with the coding regions of L mRNA. The nonspecific inhibition of viral protein synthesis in infected cells may reflect the role of N, NS, and/or L proteins in the replication and transcription of viral RNA or result from duplex formation between the oligomers and complementary, plus-strand viral RNA.(ABSTRACT TRUNCATED AT 250 WORDS)
The assembly of mammalian pre-mRNAs into large 50S to 60S complexes, or spliceosomes, containing small nuclear ribonucleoproteins (snRNPs) leads to the production of splicing intermediates, 5' exon and lariat-3' exon, and the subsequent production of spliced products. Influenza virus NS1 mRNA, which encodes a virus-specific protein, is spliced in infected cells to form another viral mRNA (the NS2 mRNA), such that the ratio of unspliced to spliced mRNA is 10 to 1. NS1 mRNA was not detectably spliced in vitro with nuclear extracts from uninfected HeLa cells. Surprisingly, despite the almost total absence of splicing intermediates in the in vitro reaction, NS1 mRNA very efficiently formed ATP-dependent 55S complexes. The formation of 55S complexes with NS1 mRNA was compared with that obtained with an adenovirus pre-mRNA (pKT1 transcript) by using partially purified splicing fractions that restricted the splicing of the pKT1 transcript to the production of splicing intermediates. At RNA precursor levels that were considerably below saturation, approximately 10-fold more of the input NS1 mRNA than of the input pKT1 transcript formed 55S complexes at all time points examined. The pKT1 55S complexes contained splicing intermediates, whereas the NS1 55S complexes contained only precursor NS1 mRNA. Biotin-avidin affinity chromatography showed that the 55S complexes formed with either NS1 mRNA or the pKT1 transcript contained the Ul, U2, U4, U5, and U6 snRNPs. Consequently, the formation of 55S complexes containing these five snRNPs was not sufficient for the catalysis of the first step of splicing, indicating that some additional step(s) needs to occur subsequent to this binding. These results indicate that the 5' splice site, 3' splice site, and branchpoint of NS1 mRNA were capable of interacting with the five snRNPs to form 55S complexes, but apparently some other sequence element(s) in NS1 mRNA blocked the resolution of the 55S complexes that leads to the catalysis of splicing. On the basis of our results, we suggest mechanisms by which the splicing of NS1 mRNA is controlled in infected cells.Eucaryotic pre-mRNAs synthesized by RNA polymerase II usually contain intervening sequences (introns) that are removed by splicing. The first step is cleavage at the 5' splice site, to generate the 5' exon and a lariat form of the intron attached to the 3' exon. Subsequently, the 5' and 3' exons are ligated to form the mature mRNA and to release the intron lariat (23,27). During the initial phase of the reaction, the pre-mRNA substrate is assembled into ribonucleoprotein complexes, or spliceosomes, containing small nuclear ribonucleoproteins (snRNPs) (1,4,7,10,24). The largest complexes found in mammalian systems sediment at about 50S to 60S in sucrose gradients (1,7,10,24). Analysis of the snRNP composition of 50S to 60S spliceosomes by affinity selection of biotinylated pre-mRNA on streptavidin-agarose beads indicated that the Ul, U2, U4, U5, and U6 snRNPs are present in these spliceosomes (2, 11). The same snRNPs have been ide...
An efficient procedure is described for synthesizing deoxyribonucleoside methylphosphonates on polystyrene polyner supports which involves condensing 5'-dimethoxytrityldeoxynucleoside 3'-methylphosphonates. The
Methylphosphonic dichloride was used to prepare protected deoxyribonucleoside 3'-methylphosphonate beta-cyanoethyl esters, d-[(MeO)2Tr]NpCNEt, and protected oligonucleoside methylphosphonates in solution. Reaction of d-[(MeO)2Tr]N with methylphosphonic dichloride gives d-[(MeO)2Tr]NpCl. The phosphonylation and subsequent esterification or condensation reactions are each complete within 60 min. The products are readily purified by "flash chromatography" on silica gel columns. d-[(MeO)2Tr]NpCl, or its tetrazole derivative, d-[(MeO)2Tr]Nptet, were tested as intermediates for the synthesis of oligothymidine methylphosphonates on a silica gel polymer support. The average yield per coupling step was 76% and did not increase with addition of more d-[(MeO)2Tr]TpCl. The formation of (5'-5') linked thymidine dimers indicated that the thymidine monomers are clustered closely together on the support. When N is ibuG, the yield for the coupling step on the support is very low. This may be due to steric hindrance of the 3'-phosphonate group by the N-2 isobutryl protecting group.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.