Salt marsh and mangrove have been recognized as being among the most valuable ecosystem types globally in terms of their supply of ecosystem services and support for human livelihoods. These coastal ecosystems are also susceptible to the impacts of climate change and rising sea levels, with evidence of global shifts in the distribution of mangroves, including encroachment into salt marshes. The encroachment of woody mangrove shrubs and trees into herbaceous salt marshes may represent a substantial change in ecosystem structure, although resulting impacts on ecosystem functions and service provisions are largely unknown. In this review, we assess changes in ecosystem services associated with mangrove encroachment. While there is quantitative evidence to suggest that mangrove encroachment may enhance carbon storage and the capacity of a wetland to increase surface elevation in response to sea-level rise, for most services there has been no direct assessment of encroachment impact. On the basis of current understanding of ecosystem structure and function, we theorize that mangrove encroachment may increase nutrient storage and improve storm protection, but cause declines in habitat availability for fauna requiring open vegetation structure (such as migratory birds and foraging bats) as well as the recreational and cultural activities associated with this fauna (e.g., birdwatching and/or hunting). Changes to provisional services such as fisheries productivity and cultural services are likely to be site specific and dependent on the species involved. We discuss the need for explicit experimental testing of the effects of encroachment on ecosystem services in order to address key knowledge gaps, and present an overview of the options available to coastal resource managers during a time of environmental change.
The climate change-induced expansion of mangroves into salt marshes could significantly alter the carbon (C) storage capacity of coastal wetlands, which have the highest average C storage per land area among unmanaged terrestrial ecosystems. Mangrove range expansion is occurring globally, but little is known about how these rapid climate-driven shifts may alter ecosystem C storage. Here, we quantify current C stocks in ecotonal wetlands across gradients of marsh-to mangrove-dominance, and use unique chronological maps of vegetation cover to estimate C stock changes from 2003 to 2010 in a 567-km 2 wildlife refuge in the mangrove-salt marsh ecotone. We report that over the 7-yr. period, total wetland C stocks increased 22 % due to mangrove encroachment into salt marshes. Newly established mangrove stands stored twice as much C on a per area basis as salt marsh primarily due to differences in aboveground biomass, and mangrove cover increased by 69 % during this short time interval. Wetland C storage within the wildlife refuge increased at a rate of 2.7 Mg C ha −1 yr. −1 , more than doubling the naturally high coastal wetland C sequestration rates. Mangrove expansion could account for a globally significant increase of terrestrial C storage, which may exert a considerable negative feedback on warming.
Climate change is driving the tropicalization of temperate ecosystems by shifting the range edges of numerous species poleward. Over the past few decades, mangroves have rapidly displaced salt marshes near multiple poleward mangrove range limits, including in northeast Florida. It is uncertain whether such mangrove expansions are due to anthropogenic climate change or natural climate variability. We combined historical accounts from books, personal journals, scientific articles, logbooks, photographs, and maps with climate data to show that the current ecotone between mangroves and salt marshes in northeast Florida has shifted between mangrove and salt marsh dominance at least 6 times between the late 1700s and 2017 due to decadal-scale fluctuations in the frequency and intensity of extreme cold events. Model projections of daily minimum temperature from 2000 through 2100 indicate an increase in annual minimum temperature by 0.5 °C/decade. Thus, although recent mangrove range expansion should indeed be placed into a broader historical context of an oscillating system, climate projections suggest that the recent trend may represent a more permanent regime shift due to the effects of climate change.
Salt marsh productivity is an important control of resiliency to sea level rise. However, our understanding of how marsh biomass and productivity vary across fine spatial and temporal scales is limited. Remote sensing provides a means for characterizing spatial and temporal variability in marsh aboveground biomass, but most satellite and airborne sensors have limited spatial and/or temporal resolution. Imagery from unmanned aerial vehicles (UAVs) can be used to address this data gap. We combined seasonal field surveys and multispectral UAV imagery collected using a DJI Matrice 100 and Micasense Rededge sensor from the Carpinteria Salt Marsh Reserve in California, USA to develop a method for high-resolution mapping of aboveground saltmarsh biomass. UAV imagery was used to test a suite of vegetation indices in their ability to predict aboveground biomass (AGB). The normalized difference vegetation index (NDVI) provided the strongest correlation to aboveground biomass for each season and when seasonal data were pooled, though seasonal models (e.g., spring, r2 = 0.67; RMSE = 344 g m−2) were more robust than the annual model (r2 = 0.36; RMSE = 496 g m−2). The NDVI aboveground biomass estimation model (AGB = 2428.2 × NDVI + 120.1) was then used to create maps of biomass for each season. Total site-wide aboveground biomass ranged from 147 Mg to 205 Mg and was highest in the spring, with an average of 1222.9 g m−2. Analysis of spatial patterns in AGB demonstrated that AGB was highest in intermediate elevations that ranged from 1.6–1.8 m NAVD88. This UAV-based approach can be used aid the investigation of biomass dynamics in wetlands across a range of spatial scales.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.