Accessory cell-surface molecules involved in the entry of human immunodeficiency virus-type 1 into cells have recently been identified and shown to belong to the family of chemokine receptors. Treatment of human cell lines with soluble monomeric gp120 at 37 degrees C induced an association between the surface CD4-gp120 complex and a 45-kilodalton protein, which can be down-modulated by the phorbol ester phorbol 12-myristate 13-acetate. The three proteins were coprecipitated from the cell membranes with antibodies to CD4 or to gp120. The 45-kilodalton protein comigrated with fusin on sodium dodecyl sulfate gels and reacted with rabbit antisera to fusin in protein immunoblots. No 45-kilodalton protein could be coprecipitated from similarly treated nonhuman cells. However, infection of 3T3.CD4.401 cells with vaccinia-fusin recombinant virus (vCBYF1), followed by gp120 treatment, resulted in coprecipitation of fusin and CD4.401 molecules from their membranes. Together these data provide evidence for physical association between fusin and the CD4-gp120 complex on cell membranes.
Transmission of HIV-1 is predominantly restricted to macrophage (Mphi)-tropic strains. Langerhans cells (LCs) in mucosal epithelium, as well as macrophages located in the submucosal tissues, may be initial targets for HIV-1. This study was designed to determine whether restricted transmission of HIV-1 correlates with expression and function of HIV-1 co-receptors on LCs and macrophages. Using polyclonal rabbit IgGs specific for the HIV co-receptors cytokines CXCR4 and CCR5, we found that freshly isolated epidermal LCs (resembling resident mucosal LCs) expressed CCR5, but not CXCR, on their surfaces. In concordance with surface expression, fresh LCs fused with Mphi-tropic but not with T-tropic HIV-1 envelopes. However, fresh LCs did contain intracellular CXCR4 protein that was transported to the surface during in vitro culture. Macrophages expressed high levels of both co-receptors on their surfaces, but only CCR5 was functional in a fusion assay. These data provide several possible explanations for the selective transmission of Mphi-tropic HIV variants and for the resistance to infection conferred by the CCR5 deletion.
Abstract. Cytolytic lymphocytes contain specialized lytic granules whose secretion during cell-mediated cytolysis results in target cell death. Using serial section EM of RNK-16, a natural killer cell line, we show that there are structurally distinct types of granules. Each type is composed of varying proportions of a dense core domain and a multivesicular cortical domain. The dense core domains contain secretory proteins thought to play a role in cytolysis, including cytolysin and chondroitin sulfate proteoglycan. In contrast, the multivesicular domains contain lysosomal proteins, including acid phosphatase, ot-glucosidase, cathepsin D, and LGP-120. In addition to their protein content, the lytic granules have other properties in common with lysosomes. The multivesicular regions of the granules have an acidic pH, comparable to that of endosomes and lysosomes. The granules take up exogenous cationized ferritin with lysosome-like kinetics, and this uptake is blocked by weak bases and low temperature. The multivesicular domains of the granules are rich in the 270-kD mannose-6-phosphate receptor, a marker which is absent from mature lysosomes but present in earlier endocytic compartments. Thus, the natural killer granules represent an unusual dual-function organdie, where a regulated secretory compartment, the dense core, is contained within a pre-lysosomal compartment, the multivesicular domain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.