Various reverse time migration (RTM) angle gather generation techniques have been developed to address poor subsalt data quality and multiarrival induced problems in gathers from Kirchhoff migration. But these techniques introduce new problems, such as inaccuracies in 2D subsurface angle gathers and edge diffraction artifacts in 3D subsurface angle gathers. The unique rich-azimuth data set acquired over the Shenzi field in the Gulf of Mexico enabled the generally artifact-free generation of 3D subsurface angle gathers. Using this data set, we carried out suprasalt tomography and salt model building steps and then produced 3D angle gathers to update the subsalt velocity. We used tilted transverse isotropy RTM with extended image condition to generate full 3D subsurface offset domain common image gathers, which were subsequently converted to 3D angle gathers. The angle gathers were substacked along the subsurface azimuth axis into azimuth sectors. Residual moveout analysis was carried out, and ray-based tomography was used to update velocities. The updated velocity model resulted in improved imaging of the subsalt section. We also applied residual moveout and selective stacking to 3D angle gathers from the final migration to produce an optimized stack image.
The story of seismic imaging over BHP's Shenzi Gulf of Mexico production field follows the history of offshore seismic imaging, from 2D to 3D narrow-azimuth streamer acquisition and to its leading the wide-azimuth movement with the Shenzi rich-azimuth (RAZ) survey. Each RAZ reprocessing project over the last 15 years applied the latest processing technology, culminating in hundreds of scenario tests to refine the salt model, but eventually the RAZ data reached a technical limit. A new ocean-bottom-node (OBN) survey acquired in 2020 has produced a step-change improvement over the legacy RAZ image. The uplift can be attributed to several factors. First, an OBN feasibility and survey design study demonstrated that a core of dense nodes combined with sparse nodes would improve the accuracy and resolution of the full-waveform inversion (FWI) solution. Second, the OBN data acquired following the survey design and employing FWI as the main model-building tool realized the predicted improvement. The result was a substantial change to the complex salt model, verified by a salt proximity survey as well as other salt markers, and improvement in imaging over the entire field. In addition to the improvement arising from a more accurate FWI velocity model, the steep-dip imaging also benefited from the new full-azimuth and long-offset data. However, the best steep-dip and fault imaging comes from the FWI image, a direct estimation of reflectivity from the FWI velocity. As the maximum frequency used by FWI moves toward the maximum frequency of the final reverse time migration (RTM), the FWI image approaches the resolution necessary to compete as the primary interpretation volume. Its subsalt illumination surpassed that of the RTM and even the least-squares RTM volumes. These imaging improvements are providing a new understanding of the faults and stratigraphic relationships of the field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.